BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Kulawik Jacek (Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej - PIB, Warszawa)
Tytuł
Wybrane problemy rolnictwa światowego
Selected Problems of World Agriculture
Źródło
Zagadnienia Ekonomiki Rolnej, 2015, nr 3, s. 19-47, rys., tab., bibliogr. 27 poz.
Słowa kluczowe
Rolnictwo, Zmiany klimatyczne, Bezpieczeństwo żywnościowe, Elastyczność cenowa, Obliczeniowy model równowagi ogólnej, Luka produktywności
Agriculture, Climate change, Food security, Price elasticity, Computable General Equilibrium model (CGE), Productivity gap
Uwagi
streszcz., summ.
Abstrakt
Przed rolnictwem światowym stoi poważne wyzwanie, jak zapewnić rosnącej liczbie ludności, prawdopodobnie też przeciętnie bogacącej się, odpowiedni standard ilościowy i zdrowotny wyżywienia, obniżając - a przynajmniej nie zwiększając - presję na środowisko przyrodnicze i zmianę klimatu. Będzie rosła zatem konkurencja o zasoby ziemi, wody, surowców energetycznych i mineralnych niezbędnych do wytwarzania nawozów potasowych i fosforowych. Istnieje jednak kilka strategii sprostania powyższym wyzwaniom. Potrzebne są skoordynowane i konsekwentne działania zarówno po stronie popytu (zmiany diety i wzorców konsumpcyjnych oraz redukcje strat), jak i podaży na rynkach rolno-żywnościowych. W szczególności trzeba starać się zamknąć istniejące obecnie luki produktywności, poprawić efektywność zastosowania wszystkich zasobów, inwestować w badania i wdrożenia rolnicze, zmniejszyć straty w całych łańcuchach żywnościowych. Pojedyncze działania powinno się podejmować przy tym równocześnie, i to na skalę globalną, co samo w sobie stwarza ogromny problem. Od razu nasuwa się tu refleksja związana z negocjacjami klimatycznymi. Niemal wszyscy zgadzają się, że przyjmując wielostronne porozumienie, łączny dobrobyt uległby maksymalizacji. Jednak pokusa "jazdy na gapę" przeważa wśród wielu krajów, bo wciąż priorytety mają cele i efekty krótkookresowe oraz interesy narodowe.(abstrakt oryginalny)

World agriculture faces a serious challenge: how to guarantee a relevant quantitative and health standard of food provision to a growing, and probably increasingly more affluent population, at the same time, reducing - or at least not increasing - the pressure on the environment and climate change. As a result, competition for land, freshwater, energy and mineral resources, necessary to produce potassium and phosphorus fertilisers, will be tougher. However, there are some strategies to meet these challenges. Coordinated and consistent actions are necessary, both on the side of demand (changes in diet and consumption patterns, and reduction in food losses) and supply in agri-food markets. In particular, it is necessary to close the existing yield gaps, improve the efficiency in the use of all resources, invest in research and agricultural implementations, and reduce losses across the entire food chains. Individual actions should be taken simultaneously and on a global scale, which, in itself, poses a serious problem. This instantly brings to mind the climate negotiations: almost everyone agrees that multilateral agreements would maximise the overall well-being, but the temptation to "get a free ride" prevails among many countries, as priorities continue to have short-term objectives and effects.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Alexandratos N., Bruinsma J.: World agriculture towards 2030/2050: The 2012 revision. ESA Working paper, no. 12-03, FAO, Rome 2012.
  2. Beddington J.: Achieving food security in the face of climate change. Final report from the Commission on Sustainable Agriculture and Climate Change. CGAR, Denmark 2012.
  3. Chaudhry M.A., Barbier B.E.: Water and growth in an agricultural economy. Agricultural Economics, vol. 44, no. 2, 2013, s. 175-189.
  4. Foley J.A., Ramankutty K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O'Connel C., Ray D.K., West P.C. Balzer C., Bennet E.M., Carpenter S.R., Hill J., Monfreda C., Polasky S., Rockström J., Sheehan J., Siebert S., Tilman D., Zaks D.P.M.: Solutions for cultivated planet. Nature, no. 478, 2011, s. 337-342.
  5. Franks R.J.: Sustainable intensification: A UK perspective. Food Policy, nr 47, 2014, s. 71-80.
  6. Godfray J.Ch.H., Beddington R.J., Crute R.I., Haddad L., Lawrence D., Muir F.J., Pretty J., Robinson S., Thomas M.S., Toulmin C.: Food security: The challenge of feeding 9 billion people. Science no. 327, 2010 , s. 812-818.
  7. Godfray J.Ch.H., Garnet T.: Food security and sustainable intensification. Philosophical Transactions of the Royal Society B, nr 369, 2014, s. 2769-2778.
  8. Gollin D., Lagakos D., Waugh M.E.: The agricultural productivity gap in developing countries. Working Papers. 11-14, New York University, 2012.
  9. Kassam A., Friedrich R., Shaxson R., Reeves R., Pretty J., de Moraes Sá Carlos J.: Production systems for sustainable intensification. Technikfolgenabschätung, vol. 20, no. 2, 2011, s. 38-45.
  10. Kets E., Lejour A.: Sectoral TFP developments in the OECD. CPB, Memorand 58, 2003.
  11. Koester U.: Grundzüge der landwirtschaftlichen Marktlehre. 4. Auflage. Verlag Franz Vahlen, München 2010.
  12. Kwasek M., Obiedzińska A.: Z badań nad rolnictwem społecznie zrównoważonym (26). Zrównoważone systemy rolnicze i zrównoważona dieta. Program Wieloletni 2011-2014, nr 119. IERiGŻ-PIB, Warszawa 2014.
  13. Leggevie C., Welzer H.: Koniec świata, jaki znaliśmy. Klimat, przyszłość i szanse demokracji. Wydawnictwo Krytyki Politycznej, Warszawa 2012.
  14. Long P.S., Marshall-Colon A., Zhu G.H.: Meeting the global food demand of the future by engineering crop photosynthesis an yield potential. Cell, no. 161, 2015, s. 56-66.
  15. Lotze-Campen H., Müller Ch., Bondeau A., Rost S., Popp A., Lucht W.: Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics, vol. 39, no. 3, 2008, s. 325-338.
  16. Martin W., Mitra D.: Productivity growth and convergence in agriculture and manufacturing. Economic Development and Culture Change, vol. 49, no. 2, 2001, s. 403-422.
  17. Mueller D.N., Gerber S.J., Johnston M., Ray K.D., Ramankutty N., Foley A.J.: Closing yield gaps through nutrient and water managemant. Nature, 490, August 2012, s. 254-257.
  18. Müller Ch., Robertson R.D.: Projecting future crop productivity for global economic model. Agricultural Economics, vol. 45, no. 1, 2014, s. 37-50.
  19. Otsuka K.: Food insecurity, income inequality, and the changing comparative advantage in world agriculture. Agricultural Economics, vol. 44, 2013, s. 7-18.
  20. Robinson S., van Meijl H., Willenbockel D., Valin H., Fujimori S., Masui T., Sands R., Wise M., Calvin K., Havlik P., Mason d'Croz D., Tabeau A., Kavallari A., Schmitz Ch., Dietrich J.P., von Lampe M.: Comparing supply-side specifications in models of global agriculture and the food system. Agricultural Economics, vol. 45, no. 1, 2014, s. 21-35.
  21. Smith P.: Delivering food security without increasing pressure on land. Global Food Security, nr 2, 2013, s. 18-23.
  22. Stern N.: Globalny ład. Wydawnictwo Krytyki Politycznej, Warszawa 2010.
  23. Swinnen J., Riera O.: The global bioeconomy. Agricultural Economics, vol. 44, 2013, s. 1-5.
  24. The Hague Conference on Agriculture Food Security and Climate Change. Climat Smart Agriculture. Policies Practices and Financing for Food Security Adaptation and Mitigation, FAO, Rome 2010.
  25. Valin H., Sands Ronald D., van der Mensbrugghe D., Nelson Gerald D., Ahammad H., Blanc E., Bodirsky B., Fujimori S., Hasegawa T., Havlik P., Heyhoe E., Kyle P., Mason-D'Croz D., Paltsev S., Rolinski S., Tabeau A., van Meijl H., von Lampe Martin, Willenbockel D.: The future of food demand: understanding differences in global eco-nomic models. Agricultural Economics, vol. 45, no. 1, 2014, s. 51-67.
  26. Von Lampe M., Willenbockel D., Ahammad H., Blanc E., Cai Y., Calvin K., Fujimori S., Hasegawa T., Havlik P., Heyhoe E., Kyle P., Lotze-Campen H., Mason d'Croz D., Nelson Gerald D., Sands Ronald D., Schmitz Ch., Tabeau A., Valin H., van der Menbrugghe D., van Meijl H.: Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agricultural Economics, vol. 45, no. 1, 2014, s. 3-20.
  27. Zilberman D., Kim E., Kirschmer S., Kaplan S., Reeves J.: Technology and the future bioeconomy. Agricultural Economics, vol. 44, 2013, s. 95-102.
Cytowane przez
Pokaż
ISSN
0044-1600
Język
pol
URI / DOI
http://dx.doi.org/10.5604/00441600.1167235
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu