BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Kowalczyk Barbara (Szkoła Główna Handlowa w Warszawie)
Application of selected ideas from statistical overlapping samples theory to tendency surveys: Designed panel vs resulting overlapping samples
Prace i Materiały Instytutu Rozwoju Gospodarczego / Szkoła Główna Handlowa, 2015, nr 96, s. 127-163, tab., bibliogr. 41 poz.
Tytuł własny numeru
Analyzing and forecasting economic fluctuations
Słowa kluczowe
Badania koniunktury, Teoria statystyki, Modele panelowe
Business surveys, Theory of statistics, Panel model
Most tendency surveys are organized to be based on a fixed sample of units across time. This fixed panel constitutes a designed sample. But in practice the resulting sample always differs from the designed one, sometimes quite considerably. In tendency surveys, like in all real surveys, some sampled units refuse to participate, some agree to cooperate but forgo several periods later, some respond irregularly. Consequently, the resulting samples across time never constitute a perfect panel, they form an overlapping sample pattern. In the paper we propose a formula for adjusted balance statistics that takes into account distortion of a sample. The main idea of adjusted balance statistics is analogous to estimators known from statistical overlapping samples theory. Theoretical part of the paper is extended by empirical analysis of monthly business tendency survey data. In particular, the response pattern is studied and comparison of original and adjusted balance statistics is conducted.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
  1. Bell, P. A. (2001). Comparison of alternative labour force survey estimators, Survey Methodology, 27 (1), 53-63.
  2. Berger, Y. G. (2004). Variance estimation for measures of change in probability sampling, Canadian Journal of Statistics, 32 (9), 451-467.
  3. Betti, G., Verma, V. (2007). Rotational panel designs for surveys of income and living conditions in Europe, invited paper, International Statistical Institute 56th Session, Lisbon.
  4. Binder, D. A., Hidiroglou, M. A. (1988). Sampling in time, in Handbook of Statistics, P. R. Krishnaiah, R. Rao (eds.), vol. 6, 187-211.
  5. Ciepiela, P., Gniado, K., Wesołowski, J., Wojtyś, M. (2012). Dynamic K-composite estimator for an arbitrary rotation scheme, Statistics in Transition (New Series), 13 (1), 7-20.
  6. Degras, D. (2012). Rotation sampling for functional sata, Cornell University Library:
  7. Fuller, W. A., Rao, J. N. K. (2001). A regression composite estimator with application to the Canadian Labour Force Survey, Survey Methodology, 27 (1), 45-51.
  8. Gagliardi, F., Verma, V., Ciampalini, G. (2009). Methodology of European labour force surveys: Sample design and implementation, Working Paper No. 79, Dipartimento di Metodi Quantitativi, Università di Siena.
  9. Gambino, J., Kennedy, B., Singh, M. P. (2001). Regression composite estimation for the Canadian Labour Force Survey: Evaluation and implementation, Survey Methodology, 27 (1), 65-74.
  10. Groves, R. M., Dillman, D. A., Eltinge, J. L., Little, R. J. A. (2002). Survey nonresponse, New York: John Wiley & Sons.
  11. Hansen, M. H., Hurwitz, W. N., Madow, W. G. (1953). Sample survey methods and theory, New York: John Wiley & Sons.
  12. Holt, D., Farver, T. (1992). The use of composite estimators with two-stage repeated sample designs, Journal of Official Statistics, 8 (4), 405-416.
  13. Jessen, R. (1942). Statistical investigation of a farm survey for obtaining farm facts, Iowa Agricultural Station Research Bulletin, 304, 54-59.
  14. Kasprzyk, D., Duncan, G., Kalton, G., Singh, M. P. (eds.) (1989), Panel surveys, New York: John Wiley & Sons.
  15. Kim, K. W., Park, Y. S., Kim, N. Y. (2005). l-step generalized composite estimator under 3-way balanced rotation design, Journal of the Korean Statistical Society, 34 (3), 219-233.
  16. Kordos, J. (2012). Review of application of rotation methods in sample surveys in Poland, Statistics in Transition (New Series), 13 (2), 47-64.
  17. Kowalczyk, B. (2003). Estimation of the population total on the current occasion under second stage unit rotation pattern, Statistics in Transition, 6 (4), 503-513.
  18. Kowalczyk, B. (2013). Zagadnienia estymacji złożonej w badaniach reprezentacyjnych opartych na próbach rotacyjnych, Warszawa: Oficyna Wydawnicza SGH.
  19. Kowalczyk, B., Tomczyk, E. (2011). Non-response and weighting systems in business tendency surveys: Are expectations influenced?, Prace i Materiały Instytutu Rozwoju Gospodarczego SGH, 86, 101-119.
  20. Kowalczyk, B., Witkowski, B. (2011). O wpływie metod ważenia na własności szeregów czasowych statystyk bilansowych IRG, Prace i Materiały Instytutu Rozwoju Gospodarczego SGH, 87, 65-85.
  21. Kowalski, J. (2009). Optimal estimation in rotation patterns, Journal of Statistical Planning and Inference, 139 (4), 2429-2436.
  22. Little, R. J. A., Rubin, D. B. (2002). Statistical analysis with missing data, New York: John Wiley & Sons.
  23. Longford, N. T. (2005). Missing data and small-area estimation, New York: Springer Science + Business Media.
  24. Nedyalkova, D., Qualite, L., Tille, Y. (2009). General framework for the rotation of units on repeated survey sampling, Statistica Neerlandica, 63 (3), 269-293.
  25. OECD (2003). Business tendency surveys. A handbook, Statistics Directorate, Paris.
  26. Okafor, F., Arnab, R. (1987). Some strategies of two-stage sampling for estimating population ratios over two occasions, Australian Journal of Statistics, 29 (2), 128-142.
  27. Park, Y. S., Kim, K. W., Choi, J. W. (2001). One-level rotation design balanced on time in monthly sample and in rotation group, Journal of the American Statistical Association, 96 (456), 1483-1496.
  28. Patterson, H. D. (1950). Sampling on successive occasions with partial replacement of units, Journal of the Royal Statistical Society (Series B), 12 (2), 241-255.
  29. Rao, J., Graham, J. (1964). Rotation designs for sampling on repeated occasions, Journal of the American Statistical Association, 59 (306), 492-509.
  30. RIED (2014). Business survey in manufacturing. February, Warsaw School of Economics.
  31. Pfefferman, D., Rao, C. R. (eds.) (2009). Handbook of statistics, vol. 29A, Amsterdam: Elsevier.
  32. Särndal, C., Swensson, B., Wretman, J. (1992). Model assisted survey sampling, New York: Springer-Verlag.
  33. Scott, A., Smith, T. (1974). Analysis of repeated surveys using time series methods, Journal of the American Statistical Association, 69 (347), 674-678.
  34. Seiler, Ch. (2012). On the robustness of the balance statistics with respect to non-response, Ifo Working Paper No. 126.
  35. Steel, D. G. (2004). Sampling in time, in Encyclopedia of social measurement, K. Kempf-Leonard (ed.), Amsterdam: Elsevier Academic Press.
  36. Steel, D., McLaren, C. (2009). Design and analysis of surveys repeated over time, in Handbook of statistics, D. Pfeffermann, C. R. Rao (eds.), vol. 29B, Amsterdam: Elsevier.
  37. Tomczyk, E., Kowalczyk, B. (2010). Influence of non-response in business tendency surveys on properties of expectations, Statistics in Transition (New Series), 11 (2), 403-422.
  38. Wang, H. J. (2004). Non-response in the Norwegian business tendency survey, Statistics Norway, Department of Economic Statistic Document No 2004/3.
  39. Wesołowski, J. (2010). Recursive optimal estimation in Szarkowski rotation scheme, Statistics in Transition (New Series), 11 (2), 267-285.
  40. Yates, F. (1949), Sampling methods for censuses and surveys, London: Charles Griffin.
  41. Zou, G., Feng, S., Qin, H. (2002). Sample rotation theory with missing data, Science in China (Series A: Mathematics), 45 (1), 42-63.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu