BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Katunin Andrzej (Silesian University of Technology), Amarowicz Marcin (Silesian University of Technology), Chrzanowski Paweł (Silesian University of Technology)
Faults Diagnosis using Self-Organizing Maps: A Case Study on the DAMADICS Benchmark Problem
Annals of Computer Science and Information Systems, 2015, vol. 5, s. 1673-1681, rys.,tab., bibliogr. 39 poz.
Słowa kluczowe
This paper deals with a method of faults detection and identification based on the clusterization of the multiple diagnostic signals. Various types of faults and character of their occurrence were simulated using DAMADICS Benchmark Process Control System. A great advantage of the applied approach based on self-organizing (Kohonen) maps is that even the smallest differences in signals allow for detection, isolation and identification of type of occurred faults with respect to the healthy condition of the investigated system based on the unsupervised learning. It was shown that in some cases the faults, which are undetectable during monitoring of simple heuristic and statistical parameters and other previously applied methods, are recognizable when the approach based on self-organizing maps is applied. The case studies presented in this paper show the faults detection procedure as well as clusterization of types and successful classification of almost all the unique faulty states of the investigated system.(original abstract)
Pełny tekst
  1. M. Basseville and I. Nikiforov, "Detection of Abrupt Changes: Theory and Applications", Prentice Hall Information and Systems Science Series, 1993.
  2. M. Witczak, R.J. Patton and J. Korbicz, "Fault Detection with Observers and Genetic Programming: Application to the DAMADICS Benchmark Problem", Proc. 5th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes - SAFEPROCESS, Washington, 2003, pp. 1203-1208.
  3. A. Lipnickas and J. Korbicz, "Evolutionary Learning in Identification of Fuzzy Models: Application to DAMADICS Benchmark", Proc. 6th Domestic Conf. "Diagnostics of Industrial Processes" DPP'03, Władysławowo, 2003.
  4. J.M.F. Calado, F.P.N.F. Carreira, M.J.G.C. Mendes, J.M.G. Sá da Costa and M. Barty´s, "Fault Detection Approach Based on Fuzzy Qualitative Reasoning Applied to the DAMADICS Benchmark Problem", Proc. 5th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes - SAFEPROCESS, Washington, 2003, pp. 1179-1184.
  5. M.Witczak, J. Korbicz, M. Mrugalski and R.J. Patton, "A GMDH Neural Network-Based Approach to Robust Fault Diagnosis: Application to the DAMADICS Benchmark Problem", Control Eng. Pract., vol. 14, 2006, pp. 671-683,
  6. Y. Kourd, N. Guersi and D. Lefebvre, "Neuro-Fuzzy Approach for Default Diagnosis: Application to the DAMADICS", Proc. 4th IEEE Conf. on Digital Ecosystems and Technologies, Dubai, 2010, pp. 107- 111,
  7. Y. Kourd, D. Lefebvre and N. Guersi, "Fault Diagnosis Based on Neural Networks and Decision Trees: Application to DAMADICS", Int. J. Innov. Comput. I., vol. 9, 2013, pp. 3185-3195.
  8. G.M. de Almeida and S.W. Park, "Fault Detection and Diagnosis in the DAMADICS Benchmark Actuator System - a Hidden Markov Model Approach", Proc. 17th World Congress of the IFAC, Seoul, 2008, pp. 12419-12424,
  9. S. Openshaw and I. Turton, "A Parallel Kohonen Algorithm for the Classification of Large Spatial Datasets", Comput. Geosci., vol. 22, 1996, pp. 1019-1026,
  10. W. Melssen, R. Wehrens and L. Buydens, "Supervised Kohonen Networks for Classification Problems", Chemometr. Intell. Lab., vol. 83, 2006, pp. 99-113,
  11. D. Bianchi, R.Calogero and B. Tirozzi, "Kohonen Neural Networks and Genetic Classification", Math. Comput. Model., vol. 45, 2007, pp. 34-60,
  12. M. Amarowicz and A. Katunin, "Clustering of Delaminations in Composite Rotors Using Self-Organizing Maps", Intelligent Systems in Technical and Medical Diagnostics, J. Korbicz and M. Kowal, Eds., Advances in Intelligent Systems and Computing, vol. 230, Berlin- Heidelberg, Springer, 2014, pp. 149-159, 978-3-642-39881-0_12.
  13. S.M. Bhandarkar, J. Koh and M. Suk, "Multiscale Image Segmentation Using a Hierarchical Self-Organizing Map", Neurocomputing, vol. 14, 1997, pp. 241-272,
  14. C. Amerijckx, J.D. Legat and M. Verleysen, "Image Compression by Self-Organized Kohonen Map", Syst. Anal. Model. Sim., vol. 43, 2003, pp. 1529-1543,
  15. W.G. Teng and P.L. Chang, "Identifying Regions of Interest in Medical Images Using Self-Organizing Maps", J. Med. Syst., vol. 36, 2012, pp. 2761-2768,
  16. A.G. de Barreto, A.F.R. Araújo and H.J. Ritter, "Self-Organizing Feature Maps for Modeling and Control of Robotic Manipulators", J. Intell. Robot. Syst., vol. 36, 2003, pp. 407-450, 1023641801514.
  17. M. Johnsson and C. Balkenius, "Sense of Touch in Robots with Self- Organizing Maps", IEEE T. Robot., vol. 27, 2011, pp. 498-507, http: //
  18. A. Lendasse, J. Lee, V. Wertz and M. Verleysen, "Forecasting Electricity Consumption Using Nonlinear Projection and Self-Organizing Maps", Neurocomputing, vol. 48, 2002, pp. 299-311, S0925-2312(01)00646-4.
  19. S. Simon, A. Lendasse, M. Cottrell, J.C. Fort and M. Verleysen, "Time Series Forecasting: Obtaining Long Term Trends with Self-Organizing Maps", Pattern Recogn. Lett., vol. 26, 2005, pp. 1795-1808, http://dx.
  20. C.M. Hsu, "A Hybrid Procedure for Stock Price Prediction by Integrating Self-Organizing Map and Genetic Programming", Expert Syst. Appl., vol. 38, 2011, pp. 14026-14036, 04.210.
  21. C.W. Chan, H. Jin, K.C. Cheung and H.Y. Zhang, "Fault Detection of Systems with Redundant Sensors Using Constrained Kohonen Networks", Automatica, vol. 37, 2001, pp. 1671-1676, 1016/S0005-1098(01)00126-1.
  22. S.L. Jämsä-Jounela, M. Vermasvuori, P. Endén and S. Haavisto, "A Process Monitoring System Based on the Kohonen Self-Organizing Maps", Control Eng. Pract., vol. 11, 2003, pp. 83-92, 10.1016/S0967-0661(02)00141-7.
  23. M. Seera, C.P. Lim, D. Ishak and H. Singh, "Offline and Online Fault Detection and Diagnosis of Induction Motors Using a Hybrid Soft Computing Model", Appl. Soft Comput., vol. 13, 2013, pp. 4493-4507,
  24. T. Chopra and J. Vajpai, "Classification of Faults in DAMADICS Benchmark Process Control System Using Self Organizing Maps", Int. J. Soft Comput. Eng., vol. 1, 2011, pp. 85-90.
  25. M. Syfert, R. Patton, M. Barty´s and J. Quevedo, "Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems (Damadics): A Benchmark Study", Proc. 5th IFAC Symp. Fault Detection, Supervision and Safety of Technical Processes - SAFEPRO- CESS, Washington, 2003, pp. 939-950.
  26. M. Barty´s, R. Patton, M. Syfert, S. de las Herras and J. Quevedo, "Introduction to the DAMADICS Actuator FDI Benchmark Study", Control Eng. Pract., vol. 14, 2006, pp. 577-596, 1016/j.conengprac.2005.06.015.
  27. DAMADICS, "Website of the Research Training Network on Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems" [online], Institute of Automatic Control and Robotics, Warsaw University of Technology, 2004 [viewed: 2015-04-11]. Available from:
  28. M. Ko´scielny, M. Barty´s, P. Rzepiejewski and J. Sá da Costa, "Actuator Fault Distinguishability Study for the DAMADICS Benchmark Problem", Control Eng. Pract., vol. 14, 2006, pp. 645-652, 10.1016/j.conengprac.2005.06.014.
  29. P. Supavatanakul, J. Lunze, V. Puig and J. Quevedo, "Diagnosis of Timed Automata: Theory and Application to the DAMADICS Actuator Benchmark Problem", Control Eng. Pract., vol. 14, 2006, pp. 609-619,
  30. F. Previdi and T. Parisini, "Model-Free Actuator Fault Detection Using a Spectral Estimation Approach: the Case of the DAMADICS Benchmark Problem", Control Eng. Pract., vol. 14, 2006, pp. 635-644, http://dx.doi. org/10.1016/j.conengprac.2005.04.001.
  31. V. Puig, A. Stancu, T. Escobet, F. Nejjari, J. Quevedo and R.J. Patton, "Passive Robust Fault Detection Using Interval Observers: Application to the DAMADICS Benchmark Problem", Control Eng. Pract., vol. 14, 2006, pp. 621-633,
  32. C.M. Bocaniala and J.M.G. Sá da Costa, "Application of a Novel Fuzzy Classifier to Fault Detection and Isolation of the DAMADICS Benchmark Problem", Control Eng. Pract., vol. 14, 2006, pp. 653-669,
  33. D. Dü¸stegör, E. Frisk, V. Cocquempot, M. Krysander and M. Staro´swiecki, "Structural Analysis of Fault Isolability in the DAMADICS Benchmark", Control Eng. Pract., vol. 14, 2006, pp. 597- 608,
  34. J.M.F. Calado, J.M.G. Sá de Costa, M. Barty´s and J. Korbicz, "FDI Approach to the DAMADICS Benchmark Problem Based on Qualitative Reasoning Coupled with Fuzzy Neural Networks", Control Eng. Pract., vol. 14, 2006, pp. 685-698, 03.025.
  35. A.R.C. Oliveira and J.M.G. Sá da Costa, "Hierarchic Fault Diagnosis by Pattern-Recognition Approaches Applied to DAMADICS Benchmark", Proc. 18th IFAC World Congress, vol. 18, Milano, 2011, pp. 7737-7742,
  36. J. Vesanto, "SOM Implementation in SOM Toolbox, SOM Toolbox Online Help" [Online], Laboratory of Computer and Information Science, 2005 [viewed: 2015-04-11]. Available from: projects/somtoolbox/documentation/somalg.shtml.
  37. T. Kohonen, "Self-Organizing Maps", Springer Series in Information Sciences, vol. 30, Berlin-Heielberg, Springer, 2001.
  38. J. Vesanto, J. Himberg, E. Alhoniemi and J. Parhankangas, "SOM Toolbox for Matlab 5" [Online], Helsinki University of Technology, 2000 [viewed: 2015-04-11], Research report. Available from: http: //
  39. R. Isemann and P. Ballé, "Trends in the Application of Model- Based Fault Detection and Diagnosis of Technical Processes", Con- trol Eng. Pract., vol. 5, 1997, pp. 709-719, S0967-0661(97)00053-1.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu