BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Dimonte Alice (Parco Area delle Scienze, Italy), Berzina Tatiana (Parco Area delle Scienze, Italy), Erokhin Victor (Parco Area delle Scienze, Italy)
Basic Transitions of Physarum Polycephalum
Annals of Computer Science and Information Systems, 2015, vol. 5, s. 599-606, rys., bibliogr. 21 poz.
Słowa kluczowe
The main charter of this work is the organism Physarum polycephalum, in particular plasmodium, Physarum's vegetative phase. During this latter form, the organism is more active and moves searching for food. Plasmodium behaves like a giant amoeba, and more interestingly, its way of foraging can be interpreted as a computation. By comparing the reaction of this organism with attractors and repellents, knowing its capability of solving computational problems with natural parallelism, we dedicated the present work to study the behavior of Physarum polycephalum slime mold under different conditions. (original abstract)
Pełny tekst
  1. T. Kuroiwa, S. Kawano, and M. Hizume, "Studies on mitochondrial structure and function in physarum polycephalum. v. behaviour of mitochondrial nucleoids throughout mitochondrial division cycle," J. cell Bio., vol. 72, no. 3, pp. 687-694, 1977.
  2. R. F. Watkins and M. W. Gray, "Sampling gene diversity across the supergroup amoebozoa: largest data sets from acanth amoeba castellanii, hartmannella vermiformis, physarum polycephalum, hyperamoeba dachnaya and hyperamoeba sp.," Protist, vol. 159, no. 2, pp. 269- 281, 2008.
  3. A. Fiore Donno, C. Berney, J. Pawlowski, and S. L. Baldauf, "Higherorder phylogeny of plasmodial slime molds (myxogastria) based on elongation factor 1-a and small subunit rrna gene sequences," J. Eukaryotic Microbiol., vol. 52, no. 3, pp. 201-210, 2005B.
  4. A. Adamatzky, "Physarum machine: implementation of a kolmogorov-uspensky machine on a biological substrate," Parallel Processing Letters, vol. 17, no. 04, pp. 455-467, 2007.
  5. K. Pancerz, and A. Schumann, "Rough Set Models of Physarum Machines," Int. J. General Syst., 2014.
  6. A. Schumann, and K. Pancerz, "Towards an Object-Oriented Programming Language for Physarum Polycephalum Computing." In Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P'2013), edited by M. Szczuka, L. Czaja, and M. Kacprzak. 389-397. Warsaw, Poland.
  7. A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki, "Rules for biologically inspired adaptive network design," Science, vol. 327, no. 5964, pp. 439-442, 2010.
  8. A. Adamatzky, and S. G. Akl, "Trans-Canada slimeways: slime mould imitates the Canadian transport network," ArXiv:1105.5084v1 [nlin.PS], pp. 1-18, 2011.
  9. X. Zhang, Q. Wang, A. Adamatzky, F. T. S. Chan, S. Mahadevan, and Y. Deng, "An improved Physarum polycephalum algorithm for the shortest path problem," Scient. World J., vol. 2014, pp. 1-9, 2014.
  10. T. Nakagaki, H. Yamada, and M. Hara, "Smart network solutions in an amoeboid organism," Biophys. Chem., vol. 107, pp. 1-5, January 2004.
  11. A. Adamatzky, "Developing proximity graphs by physarum polycephalum: does the plasmodium follow the Toussaint hierarchy?," Parallel Process. Lett., vol. 19, no. 01, pp.105-127, 2009.
  12. M. Aono, S.-J. Kim, M. Hara, and T. Munakata, "Amoeba-inspired tug-of-war algorithms for exploration exploitation dilemma in extended bandit problem," Biosystems, vol. 117, no. 0, pp. 1-9, 2014.
  13. A. Tero, R. Kobayashi, and T. Nakagaki, "Physarum solver: a biologically inspired method of road-networks navigation," Phys. A: Statistical Mechanics and its Applications, vol. 363, no. 1, pp. 115- 119, 2000.
  14. T. Saigusa, A. Tero, T. Nakagaki, and Y. Kuramoto, "Amoebae anticipate periodic events," Physical Review Letters, vol. 100, p. 018101, 2008.
  15. W. Marwan, "Amoeba-inpsired network design," Science, vol. 327, no. 5964, pp. 419-20, 2010.
  16. A. Takamatsu, E. Takaba and G. Takizawa "Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model," J. Theor.Biol., vol. 256, no. 1, pp. 29-44, 2009.
  17. E. Braund, and E. Miranda, "Music with unconventional computing: a system for Physarum polycephalum sound synthesis," Lect. Notes in Comp. Sci., vol. 8905, pp 175-189, 2014.
  18. A. Cifarelli, A. Dimonte, T. Berzina, and V. Erokhin, "On the loading of Physarum polycephalum with microparticles for unconventional computing application," BioNanoSci., vol. 4, pp. 92-96, 2014.
  19. A. Adamatzky, "Manipulating substances with Physarum polycephalum," Mat. Sci. and Eng. C, vol. 30, pp. 1211-1220, 2010.
  20. E. R. Hunt, T. O'Shea-Wheller, G. F. Albery, T. H. Bridger, M. Gumn, and N. R. Franks, "Ants show a leftward turning bias when exploring unknown nest sites," Biol. Lett., vol. 10, pp. 1-4, 2015.
  21. A. Dimonte, A. Cifarelli, T. Berzina, V. Chiesi, P. Ferro, T. Besagni, F. Albertini, A. Adamatzky, and V. Erokhin, "Magnetic nanoparticlesloaded Physarum Polycephalum: directed growth and particles distribution, " Interdiscip. Sci. Life Sci., vol. 6, pp. 1-9, 2014.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu