BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Kryjak Tomasz (AGH University of Science and Technology, Poland), Król Damian
Tytuł
Shape and Colour Recognition of Dishes for the Purpose of Customer Service Process Automation in a Self-Service Canteen
Źródło
Annals of Computer Science and Information Systems, 2015, vol. 5, s. 799-808, rys., tab., bibliogr. 17 poz.
Uwagi
summ.
Abstrakt
In the article a vision system for shape and colour recognition of dishes (plates, bowls, mugs), which can be used to automate the process of customer service in a self-service canteen is described. In consists of three basic components: object segmentation using so-called background model subtraction, shape recognition using geometric invariant moments and SVM classifier, as well as colour recognition using a Gaussian model. In addition, recognition in case of close or abut objects using a distance transform like approach is presented. The solution was evaluated on a dedicated test stand with controlled LED lightning. A 98% accuracy was obtained on over 100 test images, which indicates that the solution could be used in business practise.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Y. Kawano and K. Yanai, "Real-Time Mobile Food Recognition System," in Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, June 2013. doi: 10.1109/CVPRW.2013.5 pp. 1-7.
  2. F. Zhu, M. Bosch, N. Khanna, C. Boushey, and E. Delp, "Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment," Biomedical and Health Informatics, IEEE Journal of, vol. 19, no. 1, pp. 377-388, Jan 2015. doi: 10.1109/JBHI.2014.2304925
  3. V. Bettadapura, E. Thomaz, A. Parnami, G. Abowd, and I. Essa, "Leveraging Context to Support Automated Food Recognition in Restaurants," in Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on, Jan 2015. doi: 10.1109/WACV.2015.83 pp. 580-587.
  4. H. He, F. Kong, and J. Tan, "DietCam: Multi-View Food Recognition Using a Multi-Kernel SVM," Biomedical and Health Infor- matics, IEEE Journal of, vol. PP, no. 99, pp. 1-1, 2015. doi: 10.1109/JBHI.2015.2419251
  5. SRI, "http://www.sri.com/engage/products-solutions/ food-recognition-technology (last access 03.05.2015)."
  6. BrainCorporation, " http://www.diginfo.tv/v/
  7. 12-0145-r-en.php (last access 03.05.2015)." OpenCV, "opencv.org (last access 03.05.2015)."
  8. QT, "www.qt.io (last access 03.05.2015)."
  9. T. Kryjak, "Segmentation of dishes for the purposes of customer service process automation in a self-service canteen (under review)," 2015.
  10. A. Amanatiadis, V. Kaburlasos, A. Gasteratos, and S. Papadakis, "Evaluation of shape descriptors for shape-based image retrieval," Image Pro- cessing, IET, vol. 5, no. 5, pp. 493-499, August 2011. doi: 10.1049/ietipr. 2009.0246
  11. M.-K. Hu, "Visual pattern recognition by moment invariants," Informa- tion Theory, IRE Transactions on, vol. 8, no. 2, pp. 179-187, February 1962. doi: 10.1109/TIT.1962.1057692
  12. V. Megavannan, B. Agarwal, and R. Venkatesh Babu, "Human action recognition using depth maps," in Signal Processing and Communi- cations (SPCOM), 2012 International Conference on, July 2012. doi: 10.1109/SPCOM.2012.6290032 pp. 1-5.
  13. C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, Sep. 1995. doi: 10.1023/A:1022627411411. [Online]. Available: http://dx.doi.org/10.1023/A:1022627411411
  14. Z. Fu and L. Wang, "Color Image Segmentation Using Gaussian Mixture Model and EM Algorithm," in Multimedia and Signal Processing, ser. Communications in Computer and Information Science, F. Wang, J. Lei, R. Lau, and J. Zhang, Eds. Springer Berlin Heidelberg, 2012, vol. 346, pp. 61-66. ISBN 978-3-642-35285-0. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-35286-7_9
  15. S. Mikrut, Z. Mikrut, A. Moskal, and E. Pastucha, "Detection and recognition of selected class railway signs," Image Processing & Com- munications., vol. 19, no. 2-3, p. 83-96, 2015. doi: 10.1515/ipc-2015- 0013
  16. M. Querini and G. Italiano, "Color classifiers for 2d color barcodes," in Computer Science and Information Systems (FedCSIS), 2013 Federated Conference on, Sept 2013, pp. 611-618.
  17. D. Gavrila, "A bayesian, exemplar-based approach to hierarchical shape matching," Pattern Analysis and Machine Intelligence, IEEE Transac- tions on, vol. 29, no. 8, pp. 1408-1421, Aug 2007. doi: 10.1109/TPAMI. 2007.1062
Cytowane przez
Pokaż
ISSN
2300-5963
Język
eng
URI / DOI
http://dx.doi.org/10.15439/2015F184
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu