BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Rolewicz Stefan (Institute of Mathematics of the Polish Academy of Sciences)
Tytuł
Φ-α(⋅)-K-monotone Multifunctions with Values in Ordered Banach Space with Increasing Norm
Źródło
Control and Cybernetics, 2013, vol. 42, nr 4, s. 793-803, bibliogr. s. 802-803
Słowa kluczowe
Statystyczne Sterowanie Procesem, Analiza funkcjonalna
Statistic process control (SPC), Functional analysis
Uwagi
summ.
Abstrakt
Let (X,d) be a metric space. Let Y be an ordered Banach space with increasing norm. Let Φ be a separable linear family (a class) of Lipschitz functions defined on X and with values in Y . Let α(⋅) be a nondecreasing function mapping the interwal [0,+∞) into itself such that limt↓0 α(t) / t = 0. We say that a multifunction mapping X into Φ is Φ -α(⋅)-K-monotone if for all k in the interior of K, k ∈ Int K, there is a constant Ck > 0 such that for all φx ∈ Γ(x), φy ∈ Γ(y) we have
     φx(x) + φy(y) - φx(y) - φy(x) ≥ K -Ckα(d(x, y))k.
It is shown in the paper that under certain conditions on each Φ - Φα(⋅)-K-monotone multifunction is single-valued and continuous on a dense Gδ-set.
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Asplund, E. (1968) Fréchet differentiability of convex functions, Acta Math., 121, 31-47.
  2. Jahn, J. (1986) Mathematical Vector Optimization in Partially Ordered Linear Spaces, Peter Lang, Frankfurt.
  3. Jahn, J. (2004) Vector optimization, Springer Verlag, Berlin - Heidelberg - New York.
  4. Kenderov, P.S. (1974) The set-valued monotone mappings are almost everywhere single-valued. C.R. Acad. Bulg. Sci. 27, 1173-1175.
  5. Mazur, S. (1933) Über konvexe Menge in lineare normierte Raümen. Stud. Math. 4, 70-84.
  6. Pallaschke, D., Rolewicz, S. (1997) Foundation of Mathematical Optimization. Mathematics and its Applications 388, Kluwer Academic Publishers, Dordrecht-Boston-London.
  7. Peressini, A.L. (1967) Ordered Topological Vector Space. Harper & Row, New York.
  8. Preiss, D., Zajíček, L. (1984) Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions. Proc. 11-th Winter School, Suppl. Rend. Circ. Mat di Palermo, ser II, 3, 219-223.
  9. Przeworska-Rolewicz, D., Rolewicz, S. (2012) Φ-K-subgradients of vector-valued functions. Scientiae Mathematicae Japonica 76, 357-365.
  10. Rolewicz, S. (1994) On Mazur Theorem for Lipschitz functions. Arch. Math. 63, 535-540.
  11. Rolewicz, S. (1995a) Convexity versus linearity. In: P. Rusev, I. Dimovski, V. Kiryakova, eds.Transform Methods and Special Functions 94, Science Culture Technology Publishing, Singapore, 253-263.
  12. Rolewicz, S. (1995b) On Φ-differentiability of functions over metric spaces. Topological Methods of Non-linear Analysis 5, 229-236.
  13. Rolewicz, S. (1999a) On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions. Stud. Math. 133, 29-37.
  14. Rolewicz, S. (1999b) On k-monotonicity property. In: Analiza systemowa i zarządzanie. Special volume dedicated to R. Kulikowski, Warsaw, 199-208.
  15. Rolewicz, S. (2000) On α(·)-paraconvex and strongly α(·)-paraconvex functions. Control and Cybernetics 29, 367-377.
  16. Rolewicz, S. (2001) On equivalence of Clarke, Dini, α(·)-subgradients and local α(·)-subgradients for strongly α(·)-paraconvex functions. Optimization 50, 353-360.
  17. Rolewicz, S. (2001b) On uniformly approximate convex and strongly α(·)-paraconvex functions. Control and Cybernetics 30, 323-330.
  18. Rolewicz, S. (2002) On α(·)-monotone multifunctions and differentiability of strongly α(·)-paraconvex functions. Control and Cybernetics 31, 601-619.
  19. Rolewicz, S. (2003) Φ-convex functions defined on metric spaces. Inter. Jour. of Math. Sci. 15, 2631-2652.
  20. Rolewicz, S. (2011) Differentiability of strongly paraconvex vector-valued functions. Functiones et Approximatio 44, 273-277.
Cytowane przez
Pokaż
ISSN
0324-8569
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu