BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Genge Ewa (Uniwersytet Ekonomiczny w Katowicach)
Tytuł
Teoria reakcji na pozycję w podejściu modelowym w taksonomii
Item Response Theory in Model-Based Clustering
Źródło
Ekonometria / Uniwersytet Ekonomiczny we Wrocławiu, 2016, nr 1 (51), s. 9-19, rys., tab., bibliogr. 22 poz.
Econometrics / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Ekonometria, Analiza klas ukrytych, Taksonomia
Econometrics, Latent class analysis, Taxonomy
Uwagi
streszcz., summ.
Abstrakt
Teoria reakcji na pozycję (item response theory) zaliczana jest do jednego z dwóch nurtów metodologicznych w ocenie rzetelności skali. Z kolei analizę klas ukrytych (latent class analysis) można wpisać w nurt podejścia modelowego w taksonomii, wykorzystującego ideę mieszanek rozkładów. Modele te wykorzystywane są do analizy jakościowych zbiorów danych o niejednorodnej strukturze, w których liczba klas jest nieznana (tzw. zmienna ukryta). W ostatnim czasie na popularności zyskuje podejście modelowe w taksonomii, łączące teorię reakcji na pozycje z modelami klas ukrytych. Celem pracy jest przedstawienie propozycji wykorzystania podejścia modelowego w taksonomii, wykorzystującego teorię IRT w analizie zdolności do oszczędzania w polskim społeczeństwie. Badania przeprowadzone będą z zastosowaniem pakietu MultiLCIRT programu R.(abstrakt oryginalny)

Item response theory is considered to be one of the two trends in methodological assessment of the reliability scale. In turn, latent class models can be viewed as a special case of model-based clustering, for heterogenous multivariate discrete data. We used the approach combining item response theory and latent class models to find groups of Polish households' with similar saving ability levels. We analyzed data collected as part of the Polish Social Diagnosis using MultiLCIRT package of R.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Adams R., Wilson M., Wang W., 1997, The multidimensional random coefficients logit, Applied Psychological Measurement, 21, s. 1-24.
  2. Akaike H., 1974, A new look at statistical model identification, IEEE Transactions on Automatic Control, 19, s. 716-723.
  3. Andrich D., 1978, A rating formulation for ordered response categories, Psychometrika, 43, s. 561-573.
  4. Bacci S., Bartolucci F., Gnaldi M., 2014, A class of Multidimensional Latent Class IRT models for ordinal polytomous item responses, Communication in Statistics - Theory and Methods, 43, s. 787--800.
  5. Bartolucci F., 2007, A class of multidimensional IRT models for testing unidimensionality and clustering items, Psychometrika, 72, s. 141-157.
  6. Bartolucci F., Bacci S., Gnaldi M., 2014, MultiLCIRT: An R package for multidimensional latent class item response models, Computational Statistics and Data Analysis, 71, s. 971-985
  7. Bartolucci F., Bacci S., Gnaldi M., 2015, MultiLCIRT: Multidimensional latent class Item Response Theory models. R package version 2.9, URL http://CRAN.R-project.org/package=MultiLCIRT.
  8. Bąk A., 2011, Modele klas ukrytych dla danych jakościowych, [w:] E. Gatnar, M. Walesiak, Ana-liza danych jakościowych i symbolicznych z wykorzystaniem programu R, C.H. Beck, Warszawa, s. 204-222.
  9. Birnbaum A., 1968, Some Latent Trait Models and Their Use in Inferring an Examinee's Ability, [w:] F.M. Lord, M.R. Novick, Statistical Theories of Mental Test Scores, Addison-Wesley, Reading, MA, s. 395-479.
  10. Czapiński J., Panek T. (red.), 2016, Diagnoza społeczna 2015. Warunki i jakość życia Polaków (raport), Warszawa, Rada Monitoringu Społecznego (29.01.2016).
  11. Dempster A.P., Laird N.P., Rubin D.B., 1977, Maximum likelihood for incomplete data via the EM algorithm (with discussion), Journal of the Royal Statistical Society, 39, ser. B, s. 1-38.
  12. Forcina A., Bartolucci F., 2004, Modelling quality of life variables with non-parametric mixtures, Environmetrics, 15, s. 519-528.
  13. Genge E., 2013, Poczucie śląskości wśród Ślązaków - analiza empiryczna z wykorzystaniem modeli klas ukrytych, Ekonometria 4(42), Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław, s. 48-60.
  14. Genge E., 2014, A latent class analysis of the public attitude towards the euro adoption in Poland, Advances in Data Analysis and Classification 8(4), Springer, s. 427-442.
  15. Gnaldi M., Bacci S., Bartolucci F., 2015, A multilevel finite mixture item response model to cluster examinees and schools, Advances in Data Analysis and Classification.
  16. Lazarsfeld P.F., Henry N.W., 1968, Latent Structure Analysis, Houghton Mill, Boston, MA.
  17. Masters G., 1982, A Rasch model for partial credit scoring, Psychometrika, 47, s. 149-174.
  18. Rasch G., 1960, Probabilistic Models for Some Intelligence and Attainment Tests, Danish Institute for Educational Reserch, Copenhagen.
  19. Sagan A., 2002, Zastosowanie wielowymiarowych skal czynnikowych i skal Rascha w badaniach marketingowych (na przykładzie oceny efektów komunikacyjnych reklamy), Zeszyty Naukowe Akademii Ekonomicznej w Krakowie, 605, s. 73-92.
  20. Samejima F., 1969, Estimation of ability using a response pattern of graded scores, Psychometrika Monograph, 17.
  21. Schwarz G., 1978, Estimating the dimension of a model, Annals of Statistics, 6, s. 461-464.
  22. Zhang J., 2004, Comparison of unidimensional and multidimensional approaches to IRT parameter estimation, ETS Research Report Series, RR-04-44, s. 1-42.
Cytowane przez
Pokaż
ISSN
1507-3866
Język
pol
URI / DOI
http://dx.doi.org/10.15611/ekt.2016.1.01
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu