BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Kemona Aleksandra (Lodz University of Technology), Piotrowska Małgorzata (Lodz University of Technology)
Microorganisms Potentially Useful in the Management of Polyurethane Foam Waste
Infrastruktura i Ekologia Terenów Wiejskich, 2016, nr IV/2, s. 1297-1308, tab., bibliogr. 20 poz.
Infrastructure and Ecology of Rural Areas
Słowa kluczowe
Materiały budowlane, Ochrona środowiska, Odpady, Biodegradacja, Właściwości fizykochemiczne
Building materials, Environmental protection, Wastes, Biodegradation, Physicochemical property
Polyurethane foams due to their easily regulated domain structure are group of polymers with highly variable properties. They are widely used to provide comfort in many areas of daily life. Because of toxic products polyurethane foam waste cannot be disposed by means of thermal degradation, they also show a high resistance to chemical and physical factors. Those properties combined with their low apparent density and widespread use (about 18 million tons per year) lead to a significant volume of waste that is stored in landfills. In Poland, more than 60% of those landfills, certified as well as illegal, are located in rural areas. The aim of this study was to determine the enzymatic abilities of microorganisms isolated from foam waste, which can potentially decompose polyurethane (ureases, esterases, proteases, and laccases), and to determine their ability to grow on a medium containing polyurethane foam as the only carbon source. Most of the tested strains produced ureases while the least produced were laccases and proteases. Four of the tested strains: Epicoccum nigrum, Aspergillusniger, Staphylococcusxylosus and Rhodococcus spp. showed significant growth on the medium with polyurethane foam as sole carbon source.(original abstract)
Pełny tekst
  1. Cregut, M., Bedas, M., Durand, M.J., Thouand G. (2013): New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol Adv 31: 1634-1647
  2. Darby, R.T., Kaplan, A.M. (1968): Fungal susceptibility of polyurethanes. Appl Microbiol 16: 900-905
  3. Deletoile, A., Decre, D., Courant, S., Passet, V., Audo, A., Grimont, P., Arlet, G., Brisse, S. (2016): Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. J Clin Microbiol 54: 300-310
  4. Domsch, K.H., Gams, W., Anderson, T.H. (1993): Compedium of soil fungi. Eching: IHW Verlag
  5. Falkiewicz-Dulik, M., Janda, K., Wypych. G., (2015): Handbook of material biodegradation, biodeterioration, and biostabilization (Second Edition). ChemTec Pub.
  6. Gomez, E.F., Luo, X., Li, C., Miechel, F.C., Li Y. (2014): Biodegradability of crude glicerol-based polyurethane foams during composting, anaerobic digestion and soil incubation. Poly Degrad Stabil 102: 195-203
  7. Howard, G.T. (2002): Biodegradation of polyurethane: a review. Int Biodeterior Biodegradation 49: 245-252
  8. Khleifat, K.M. (2006): Biodegradation of linear alkylbenzene sulfonate by a two-member facultative anaerobic bacterial consortium. Enzyme Microb Tech 39:1030-1035
  9. Loredo-Trevino, A., Garcia, G., Velasco-Tellez, A., Rodriquez-Herrera, R., Aguilar C.N. (2011): Polyurethane foam as substrate for fungal strains. Adv Biosci Biotechnol. 2: 52-58
  10. Mathur, G., Prasad, R., (2012): Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil. Appl Biochem and Biotech 167: 1595-1602
  11. Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Onuma, F., Nakahara. T. (1999): Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biot 51: 134-140
  12. Polak, J. Jarosz-Wilkołazka, A. (2007): Reakcje katalizowane przez lakazę - mechanizm i zastosowanie w biotechnologii. Kwartalnik "Biotechnologia" Polskiej Federacji Biotechnologicznej 4:82-94
  13. PlasticsEurope - Association of plastic manufacturers (2013): An analysis of European plastics production, demand and waste data. market-and-economics.aspx
  14. PlasticsEurope - Association of plastic manufacturers (2015): An analysis of European plastics production, demand and waste data. market-and-economics.aspx
  15. Russel, J.R., Huang, J., Anand, P., Kucera, K., Sandoval, A.G., Dantzler, K.W., Hickman D., Jee, J., Kimovec, F.M., Koppstein, D., Marks, D.H., Mittermiller, P.A., Nunez, S.J., Santiago, M., Townes, M.A., Vishnevetsky, M., Williams, N.E., Nunez Vargas, M.P., Boulanger L., Bascom-Slack, C., Strobel, S.A. (2011): Biodegradation of Polyester Polyurethane by Endophytic Fungi. Appl Environ Microb 77: 6076-6084
  16. Samson, R.A., Hoekstra, E.S., Frisvad, J.C., Filtenborg, O. (2000) Introduction to food - and airborne fungi. Delft: CBS.
  17. Shah, A.A., Hasan, F., Akhter J.I., Hameed, A., Ahmed, S. (2008): Degradation of polyurethane by novel bacterial consortium isolated from soil. Ann Microbiol 58:381-386
  18. Stępień, A.E. (2010): Biologiczna degradacja poliuretanów. Polimery 55:431-434
  19. Urgun-Demirtas, M., Singh D., Pagilla K. (2007): Laboratory investigation of biodegradability of a polyurethane foam under anaerobic conditions. Polym Degrad Stabil 92: 1599-1610
  20. Wirpsza, Z. (1993). Polyurethanes: chemistry, technology and applications. Ellis Horwood Ltd.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu