BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Jurczyk Michał (AGH Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie), Mikus Martin (Cologne University of Applied Science), Dziedzic Krzysztof (University of Agriculture in Krakow)
Tytuł
Flue Gas Cleaning in Municipal Waste-To-Energy Plants. Part 2
Źródło
Infrastruktura i Ekologia Terenów Wiejskich, 2016, nr IV/2, s. 1309-1321, tab., bibliogr. 26 poz.
Infrastructure and Ecology of Rural Areas
Słowa kluczowe
Ochrona flory, Emisja gazów, Utylizacja odpadów
Protection of flora, Gas emissions, Waste utilization
Uwagi
summ.
Abstrakt
This article is a continuation of the first part of the article flue gas cleaning in municipal Waste-to-Energy plants - part I. The first part contains an extensive introduction to the subject of flue gas cleaning and cover subjects: reduction of dust and particle-bounded heavy metals as well as NOX reduction. The second part focuses on reduction of acid gases, organic pollutants and heavy metals. One chapter is devoted to examples of working plants: Spittelau (AT), Issy les Moulineaux (FR), Mainz (DE), Zabalgarbi (ES) where used technology and pollutants emissions are shown along with comparison to WTERT 2006 top ten plants and EU limits. Six new Polish Waste-to-Energy plants are shortly describe according to flue gas treatment methods. Some topics, as costs and residual handling, are only briefly mentioned and for more information the reader is advised to use literature which will allow them to learn more about technology, processes and problems presented in the text. The aim of the study is to present the current state of flue gas cleaning in Waste-to-Energy plants. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Achternbosch, M., Richers, U. (2002). Materials Flows and Investment Costs of Flue Gas Cleaning Systems of Municipal Solid Waste Incinerators. Karlsruhe.
  2. Benkő, T., Mizsey, P. (2007). Comparison of flue gas desulphurization processes based on life cycle assessment. Polytech. Chem. Eng., 51, 19-27.
  3. Cyranka M., Jurczyk M. (2016). Energy recovery from municipal waste based on moving grate technology. Agr. Eng. 20/1, 23-33.
  4. Cyranka M., Jurczyk M., Pająk T. (2016). Municipal Waste-to-Energy plants in Poland - current projects. E3S Web of Conferences (publication in process).
  5. European Commission, (2006). Integrated Pollution Prevention and Control Reference Document on the Best Available Techniques for Waste Incineration.
  6. European Parliament and Council, (2010). Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010on industrial emissions. Official Journal of the European Communities, 17.12.2010, L334/17.
  7. Grieco, E., Poggio, A. (2009). Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant. Applied Energy, 86,1517-1523.
  8. ISWA. (2012). WtE State of the Art Report.
  9. Jonas, C., Krobath, P., Pawelka, E., Ponweiser, U., Höbler, M. (2015). Thermal Waste Treatment Plant Spittelau - New Construction to the Existing Plant. TK, Waste management 5, 147-165.
  10. Keener, T., Davis, W. (1984). Study of the Reaction of SO2 with NaHCO3 and Na2CO3. Journal of the Air Pollution Control Association, 34, 651-654.
  11. Kong, Y., Davidson, H. (2010). Dry Sorbent Injection of Sodium Sorbents for SO2, HCl and Mercury Mitigation, NAWTEC, 18, 3560.
  12. MHKW-Mainz. (2016). www.mhkw-mainz.de (accessed 10.03.2016).
  13. Mokrosz, W. (2010). Współczesne osiągnięcia w ochronie powietrza atmosferycznego POL-EMIS 2010. Polanica Zdrój.
  14. Löschau, M., Karpf, R. (2015). Flue Gas Treatment - State of the Art. TK, Waste management 5, 193-220.
  15. Pająk, T., Jurczyk, M. (2016). Initial operating experience with the new Polish Waste-to- Energy plants. TK, Waste management Vol. 6, 189-199.
  16. Pająk, T., Jurczyk, M., Cyranka, M. (2015). Reduction of SOx emission in waste incineration plants. Przemysł Chemiczny, 94, 1544-1547.
  17. Piecuch, T. (1998). Termiczna utylizacja odpadów i ochrona powietrza przed szkodliwymi składnikami spalin, Wydawnictwo Politechniki Koszalińskiej.
  18. Poggio, A., Grieco E. (2010). Influence of flue gas cleaning system on the energetic efficiency and on the economic performance of a WTE plant. Waste Management, 30, 1355-1361.
  19. Saanilahti. S. (2008). Reducing HCl and SO2 emissions with dry flue gas cleaning process. Tampere Polytechnic.
  20. Spittelau (2008). Spittelau thermal waste treatment plant. Wien Energie.
  21. Syctom France. (2014). Annual report 2013
  22. Wilts, H., von Gries, N. (2014). Municipal Solid Waste Management Capacities in Europe Desktop Study. ETC/SCP Working Paper No 8/2014.
  23. WTERT. (2016). www.seas.columbia.edu/earth/wtert/ (accessed 10.03.2016).
  24. WSP. (2013). Review of state-of-art Waste-to-Energy technologies, Stage Two - Case studies.
  25. Zabalgarbi. (2016). www.zabalgarbi.com (accessed 10.03.2016).
  26. Xin-gang, Z., Gui-wu, J., Ang, L., LiYun, L. (2016). Technology, cost, a performance of waste-to-energy incineration industry in China. Renewable and Sustainable Energy Reviews, 55,115-130.
Cytowane przez
Pokaż
ISSN
1732-5587
Język
eng
URI / DOI
http://dx.medra.org/10.14597/infraeco.2016.4.2.096
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu