BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Węglarczyk Stanisław (Cracow University of Technology)
Tytuł
Comparison of Classical and Theil-Kendall Methods in Assessing the Significance of Linear Trend of Precipitation in South-Eastern Poland
Źródło
Infrastruktura i Ekologia Terenów Wiejskich, 2016, nr IV/2, s. 1439-1450, rys., tab., bibliogr. 19 poz.
Infrastructure and Ecology of Rural Areas
Słowa kluczowe
Klimatologia, Woda, Regresja liniowa, Metody estymacji, Badania porównawcze, Rozkład przestrzenny
Climatology, Water, Linear regression, Estimation methods, Comparative examination, Spatial distribution
Uwagi
summ.
Abstrakt
Two methods of linear trend estimation: the ordinary least squares (OLS, parametric) and Theil-Kendall (TK, nonparametric) are compared in the paper. The comparison was made using 65 time series of annual totals, Pa , and annual daily maximum, Pmax, of precipitation, 30-year long each, recorded in the south-eastern part of Poland (the Upper Vistula catchment). The OLS and TK slope coefficients of trends revealed high similarity for both Pa and Pmax series. The signs of slopes are the same for 64 sites for Pa and 63 sites for Pmax with positive signs prevailing: the numbers of decreasing trends for Pa OLS and TK slopes were 3 and 4, respectively, and, for Pmax, 13 for both OLS and TK slopes. In trend significance testing, both methods produced similar results for Pa time series: out of 16 significant trends, 13 were determined with both OLS and TK at the same sites. For Pmax series such agreement was found for 4 trends out of 10. Spatial distribution of significant trends showed a kind of clustering in certain parts of the investigated area.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Brath, A., Castellarin, A., Montanari, A. (1999). Detecting non stationarity in extreme rainfall data observed in Northern Italy, in: Proceedings of EGS - Plinius Conference on Mediterranean Storms, Maratea, 219-231
  2. Burn, D.H., Hag Elnur, M.A. (2002). Detection of hydrologic trends and variability. Journal of Hydrology, 255, 107-122
  3. Cebulska M., Twardosz R., Cichocki J. (2007). Zmiany rocznych sum opadów atmosferycznych w dorzeczu górnej Wisły w latach 1881 - 2030, [w:] K. Piotrowicz, R. Twardosz (red.), Wahania klimatu w różnych skalach przestrzennych i czasowych, Instytut Geografii i Gospodarki Przestrzennej UJ, Kraków, 383 - 390.
  4. Cebulska M. (2015). Wieloletnia zmienność maksymalnych opadów dobowych w Kotlinie Orawsko-Nowotarskiej (1984-2013), Czasopismo Inżynierii Lądowej, Środowiska i Architektury, 2015, z. 62, nr 3/I, 49-60
  5. Douglas E.M., Vogel R.M., Kroll C.N. ( 2000). Trends in floods and low flows in the United States: impact of spatial correlation, Journal of Hydrology 240 (2000) 90-105
  6. Gordon H. B., Whetton P. H., Pittock A. B., Fowler A. M., Haylock M. R. (1992). Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events, Climate Dynamics (1992) 8 : 83-102
  7. Helsel D.R., Hirsch R.M.(2002). Statistical Methods in Water Resources, U.S. Geological Survey, Techniques of Water-Resources Investigations Book 4, Chapter A3
  8. Kendon E.J., Roberts N. M., Fowler H. J., Roberts M. J., Chan S. C., Senior C.A. (2014). Heavier summer downpours with climate change revealed by weather forecast resolution model, Nature Climate Change 4, 570-576 (2014) doi:10.1038/nclimate2258
  9. Meshram, S.G., Singh, V.P., Meshram, C. (2016). Long-term trend and variability of precipitation in Chhattisgarh State, India, Theor. Appl. Climatol., doi:10.1007/s00704- 016-1804-z
  10. Sen P.K. (1968). Estimates of the Regression Coefficient Based on Kendall's Tau, Journal of the American Statistical Association, Vol. 63, No. 324. (Dec., 1968), pp. 1379-1389
  11. Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, Part I, In the Proceedings of the Royal Netherlands Academy of Sciences 53 (1950), pp 386-392.
  12. Prosdocimi I., Kjeldsen T. R., Svensson C. (2014). Non-stationarity in annual and seasonal series of peak flow and precipitation in the UK. Natural Hazards and Earth System Sciences, 14, pp. 1125-1144.
  13. Razavi T., Switzman H., Arain A., Coulibaly P. (2016). Regional climate change trends and uncertainty analysis using extreme indices: A case study of Hamilton, Canada, Climate Risk Management xxx (2016) xxx-xxx (article in press)
  14. Shapiro S. S., Wilk M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples) Biometrika, Vol. 52, No. 3/4. (Dec., 1965), pp. 591-611.
  15. Svoboda V., Hanel M., Máca P., Kyselý J. (2016). Projected changes of rainfall event characteristics for the Czech Republic. Journal of Hydrology and Hydromechanics, 64, DOI: 10.1515/johh-2016-0036
  16. Trenberth K. E., Dai A., Rasmussen R. M., Parsons, D. B. (2003). The changing character of precipitation, Bull. Am. Meteorol. Soc. 84, 1205-1217.
  17. Willems P., Arnbjerg-Nielsen K., Olsson J., Nguyen V.T.V. (2012). Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings, Atmospheric Research 103, 106-118
  18. Wrzesiński D. (2009). Tendencje zmian przepływu rzek polski w drugiej połowie XX wieku. Badania Fizjograficzne Seria A - Geografia Fizyczna; 60, 147-162
  19. Zhang Q., Gu X., Singh V.P., Xiao M., Xu C-Y. (2014). Stationarity of annual flood peaks during 1951-2010 in the Pearl River basin, China. Journal of Hydrology, 519, 3263-3274.
Cytowane przez
Pokaż
ISSN
1732-5587
Język
eng
URI / DOI
http://dx.medra.org/10.14597/infraeco.2016.4.2.106
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu