BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Wiktorowicz Justyna (University of Lodz, Poland)
Tytuł
Exploratory Factor Analysis in the Measurement of the Competencies of Older People
Eksploracyjna analiza czynnikowa w ocenie kompetencji osób starszych
Źródło
Ekonometria / Uniwersytet Ekonomiczny we Wrocławiu, 2016, nr 4 (54), s. 48-60, tab., bibliogr. 51 poz.
Econometrics / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Kompetencje miękkie, Analiza czynnikowa, Kompetencje, Proces starzenia, Eksploatacyjna analiza
Soft competencies, Factor analysis, Competences, Aging process, Operational analysis
Uwagi
streszcz., summ.
Abstrakt
Kompetencje stanowią kluczowy czynnik determinujący pozycję zawodową i rozwój kariery. Celem pracy jest ocena kompetencji osób w późnej fazie wieku produkcyjnego z wykorzystaniem eksploracyjnej analizy czynnikowej. Kolejnym zadaniem jest krytyczny przegląd teoretycznych i praktycznych prac w zakresie eksploracyjnej analizy czynnikowej. Analizę empiryczną oparto na danych Bilansu Kapitału Ludzkiego. Wyniki badań potwierdzają użyteczność analizy czynnikowej w analizach kapitału ludzkiego w kontekście starzenia się populacji. Skonstruowane wskaźniki pozwalają na syntetyczną ocenę kompetencji Polaków w wieku 50-59/64 lata. Analizy wskazują także duże znaczenie wszystkich badanych 24 kompetencji. Kompetencje Polaków w wieku 50-59/64 lata mogą zostać zdekomponowane w trzy grupy: (1) kompetencje miękkie i sprawność fizyczna, (2) kompetencje informatyczne, (3) dyspozycyjność i kompetencje techniczne(abstrakt oryginalny)

Competencies are a crucial factor of professional position and career development. The aim of this paper is the assessment of the competencies of people in late productive age using exploratory factor analysis. The second point is the critical review of the theory and practice on exploratory factor analysis. The empirical analysis is based on the Study of Human Capital data. The survey results confirm the necessity of the factor analysis in research in the area of human capital in the context of ageing. The constructed synthetic indicators allowed for a synthetic assessment of the competencies of Poles aged 50-59/64. The results of the conducted analysis confirm the large significance of all the 24 analysed competencies. The competencies of Poles aged 50-59/64 were decomposed into three groups: (1) soft competencies and physical fitness (2) computer skills and (3) availability and technical competencies.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Anderson R.D., Rubin H., 1956, Statistical inference in factor analysis, Proceedings of the Third Berkeley Symposium of Mathematical Statistics and Probability, vol. 5, pp. 111-150.
  2. Baker B.O., Hardyck C.D., Petrinovich L.F., 1966, Weak measurements vs. strong statistics: An empirical critique of S.S. Stevens' proscriptions on statistics, Educational and Psychological Measurement, vol. 26, pp. 291-309.
  3. Borgatta E.F., Bohrnstedt G.W., 1980, Level of measurement - once over again, Sociological Methods and Research, vol. 9, pp. 147-160.
  4. Boyatzis R., 1982, The Competent Manager: A Model for Effective Performance, Wiley, New York, [after:] Filipowicz G., 2014, Zarządzanie kompetencjami: Perspektywa firmowa i osobista, Wolters Kluwer, Warszawa.
  5. Carifio J., Perla R.J., 2007, Ten common misunderstandings, misconceptions, persistent myths and urban legends about likert scales and likert response formats and their antidotes, Journal of Social Sciences, vol. 3, no 3, pp. 106-116.
  6. Cattell RB., 1966, The scree test for the number of factors, Multivariate Behavioral Research, vol. 1, no. 2, pp. 245-276.
  7. Comrey A.L., Lee H.B., 1992, A First Course in Factor Analysis, Hillsdale, Erlbaum, Ney York.
  8. Costello A.B., Osborne J.W., 2005, Best practices in exploratory factor analysis: four recommendations for getting the most from your analysis, Practical Assessment, Research & Evaluation, vol. 10, no. 7, http://pareonline.net/getvn.asp?v=10&n=7 (accessed: 30.08.2015).
  9. Czopek A., 2013, Analiza porównawcza efektywności metod redukcji zmiennych - analiza składowych głównych i analiza czynnikowa, Studia Ekonomiczne, vol. 132, pp. 7-23.
  10. de Winter J.C.F., Dodou D., 2012, Factor recovery by principal axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size, Journal of Applied Statistics, vol. 39, no. 4, pp. 695-710.
  11. DiStefano Ch., Zhu M., Mîndrilă D., 2009, Understanding and using factor scores: considerations for the applied researcher, Practical Assessment, Research & Evaluation, vol. 14, no. 20, http://pareonline.net/getvn.asp?v=14&n=20 (accessed: 30.08.2015).
  12. Fabrigar L.R., Wegener D.T., MacCallum R.C., Strahan E.J., 1999, Evaluating the use of exploratory factor analysis in psychological research, Psychological Methods, 3, pp. 272-299.
  13. Field A., 2000, Discovering Statistics Using SPSS for Windows, Sage Publications, London-Thousand Oaks-New Delhi.
  14. Filipowicz G., 2004, Zarządzanie kompetencjami zawodowymi, Polskie Wydawnictwo Ekonomiczne, Warszawa.
  15. Górniak J., Czarnik S., Dobrzyńska M., Jelonek M., Keler K., Kocór M., Strzebońska A., Szczucka A., Turek K., Worek B., 2011, Study of Human Capital in Poland, Polish Agency for Enterprise Development, Warsaw.
  16. Gorsuch R., 1983, Factor Analysis, Lawrence Erlbaum Associates, Hillsdale, New York.
  17. Guadagnoli E., Velicer W.F., 1988, Relation of sample size to the stability of component patterns, Psychological Bulletin, vol. 103, pp. 265-275.
  18. Hair J., Anderson R.E., Tatham R.L., Black W.C., 1998, Multivariate Data Analysis, Prentice-Hall Inc., Englewood Cliffs.
  19. Hotelling H., 1933, Analysis of a Complex of Statistical Variables into Principal Components, Journal of Educational Psychology, No 24, pp. 417-441, 498-520.
  20. Izquierdo I., Olea J., Abad F.J., 2014, Exploratory factor analysis in validation studies: Uses and re- commendations, Psicothema, vol. 26, no. 3, pp. 395-400.
  21. Jamieson S., 2004, Likert scales: how to (ab)use them, Medical Education, vol. 38, pp. 1212-1218.
  22. Jöreskog K.G., 2002, Structural Equation Modeling with Ordinal Variables Using LISREL, http://www.ssicentral.com/lisrel/techdocs/ordinal.pdf (accessed: 30.09.2015).
  23. Kaiser H.F., 1974, An index of factorial simplicity, Psychometrika, vol. 39, pp. 31-36.
  24. Krzanowski W.J., 1983, Distance between populations using mixed continuous and categorical variables, Biometrika, vol. 70, no. 1, pp. 235-243.
  25. Labovitz S., 1967, Some observations on measurement and statistics, Social Forces, vol. 46, no. 2, pp. 151-160.
  26. Lawley D.N., 1940, The estimation of factor loading by the method of maximum likelihood, Proceedings of the Royal Society of Edinburgh, A, vol. 60, pp. 64-82.
  27. Lubke G.H., Muthén B.O., 2004, Factor-analyzing Likert-scale data under the assumption of multivariate normality complicates a meaningful comparison of observed groups or latent classes, Structural Equation Modeling, vol. 11, pp. 203-229.
  28. MacCallum R.C., Widaman K.F., Zhang S., Hong S., 1999, Sample size in factor analysis, Psychological Methods, vol. 4, no. 1, pp. 84-99.
  29. Malarska A., 2005, Statystyczna analiza danych wspomagana programem SPSS, SPSS Polska, Kraków.
  30. Mislevy R.J., 1986, Recent developments in the factor analysis of categorical variables, Journal of Educational Statistics, vol. 11, no. 1, pp. 3-31.
  31. Muthén B., Kaplan D., 1985, A comparison of some methodologies for the factor analysis of non-normal Likert variables, British Journal of Mathematical and Statistical Psychology, vol. 38, pp. 171-189.
  32. Panek T., 2009, Statystyczne metody wielowymiarowej analizy porównawczej, SGH - Oficyna Wydawnicza, Warszawa.
  33. Pearson K., 1901, On lines and planes of closest fit to systems of points in space, Philosophical Magazine, vol. 2(6), pp. 559-575.
  34. Pleśniak A., 2009, Wybór metody estymacji w budowie skali czynnikowej, Wiadomości Statystyczne, vol. 11, no. 582, pp. 1-16.
  35. Rietveld T., van Hout R., 1993, Statistical Techniques for the Study of Language and Language Behaviour, Mouton de Gruyter, Berlin - New York.
  36. Rousson V., Gasser T., 2004, Simple component analysis, Applied Statistics, vol. 53, pp. 539-555.
  37. Sapnas K.G., Zeller R.A., 2002, Minimizing sample size when using exploratory factor analysis for measurement, Journal of Nursing Measurement, vol. 10, no. 2, pp. 135-153.
  38. Snook S.C., Gorsuch R.L., 1989, Component analysis versus common factor-analysis - a Monte-Carlo study, Psychological Bulletin, vol. 106, no 1, pp. 148-154.
  39. Spearman C., 1904, "General intelligence". Objectively determined and measured, American Journal of Psychology, vol. 15, pp. 201-293.
  40. Steiger J.H., 1990, Some additional thoughts on components, factors, and factor - indeterminacy, Multivariate Behavioral Research, vol. 25, no. 1, pp. 41-45.
  41. Stevens J.P., 2002, Applied Multivariate Statistics for the Social Sciences, 4th ed., Lawrence Erlbaum, Mahwah.
  42. Sztemberg-Lewandowska M., 2008, Analiza czynnikowa w badaniach marketingowych, Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław.
  43. Tabachnick B.G., Fidell L.S., 2007, Using Multivariate Statistics, Pearson Education Inc., Boston.
  44. Tucker L.R., MacCallum R.C., 1997, Exploratory Factor Analysis, http://www.unc.edu/~rcm/book/factornew.htm (accessed: 24.06.2015).
  45. Thurston L.L., 1945, Multiple Factor Analysis, University of Chicago, Chicago.
  46. Velicer W.F., Fava J.L., 1998, Effects of variable and subject sampling on factor pattern recovery, Psychological Methods, vol. 3, pp. 231-251.
  47. Velicer W.F., Jackson D.N., 1990, Component analysis versus common factor-analysis - some further observations, Multivariate Behavioral Research, vol. 25, no. 1, pp. 97-114.
  48. Velleman P.F., Wilkinson L., 1993, Nominal, ordinal, interval, and ratio typologies are misleading, The American Statistician, vol. 47, no. 1, pp. 65-72.
  49. Walesiak M., Bąk A., 2007, Wykorzystanie analizy czynnikowej w badaniach marketingowych, Badania Operacyjne i Decyzje, vol. 1, pp. 75-87.
  50. Walesiak M., Gatnar E. (eds), 2009, Statystyczna analiza danych z wykorzystaniem programu R, PWN, Warszawa.
  51. Zeliaś A., 1980, Analiza czynnikowa jako metoda doboru zmiennych w modelach ekonometrycznych, Zeszyty Naukowe AE w Krakowie, vol. 131, pp. 7-27.
Cytowane przez
Pokaż
ISSN
1507-3866
Język
eng
URI / DOI
http://dx.doi.org/10.15611/ekt.2016.4.03
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu