- Autor
- Sączewska-Piotrowska Anna (University of Economics in Katowice, Poland)
- Tytuł
- Near Poverty - Definition, Factors, Predictions
Sfera blisko ubóstwa - definicja, czynniki, prognozy - Źródło
- Ekonometria / Uniwersytet Ekonomiczny we Wrocławiu, 2016, nr 4 (54), s. 82-94, rys., tab., bibliogr. 27 poz.
Econometrics / Uniwersytet Ekonomiczny we Wrocławiu - Słowa kluczowe
- Ekonometria, Łańcuch Markowa, Regresja logistyczna, Ubóstwo
Econometrics, Markov chain, Logistic regression, Poverty - Uwagi
- streszcz., summ.
- Abstrakt
- Celem artykułu była analiza sfery blisko ubóstwa w Polsce. Pierwszym celem szczegółowym była analiza przejść do i ze sfery ubóstwa w Polsce z użyciem macierzy przejścia Markowa. Rozważane były trzy stany: ubóstwo, blisko ubóstwa (dochody gospo-darstw domowych od 100% do 125% przyjętej granicy ubóstwa) oraz poza zagrożeniem ubóstwem (dochody wyższe niż 125% przyjętej granicy ubóstwa). Analiza została przepro-wadzona na podstawie zbilansowanego panelu 2009-2015 w ramach projektu "Diagnoza społeczna". Drugim szczegółowym celem było określenie czynników zwięk-szających i zmniejszających szanse pobytu w sferze blisko ubóstwa z wykorzystaniem dwumianowej regresji logistycznej.(abstrakt oryginalny)
The aim of the paper was to analyse near poverty in Poland. The first specific aim was to analyse the transitions into and out of near poverty in Poland using the Markov transition matrix. Three poverty states were considered: poverty, near poverty (an income of between 100 and 125 per cent of the poverty threshold is assumed in the paper) and above near poverty. The analysis was conducted for Poland based on the balanced panel from 2009 to 2015, the framework of the "Social Diagnosis" project. The second specific aim was to determine the factors that increase and decrease the odds of being in near poverty using bi-nomial logistic regression.(original abstract) - Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu - Pełny tekst
- Pokaż
- Bibliografia
- Anderson T.W., Goodman L.A., 1957, Statistical-interference about Markov chains, Annals of Math-ematical Statistics, vol. 28, no. 1, pp. 89-110.
- Ben-Shalom Y., Moffitt R.A., Scholz J.K., 2011, An assessment of the effectiveness of anti-poverty programs in the United States, National Bureau of Economic Research Working Paper no. w17042.
- Bhat B.R., 2000, Stochastic models. Analysis and applications, New Age International, New Delhi.
- Bieszk-Stolorz B., Markowicz I., 2013, Płeć jako determinanta szansy podjęcia zatrudnienia i ryzyka rezygnacji z pośrednictwa urzędu pracy, Optimum. Studia Ekonomiczne, vol. 66, no. 6, pp. 20-30.
- Council For Social Monitoring, 2015, Integrated database, http://www.diagnoza.com.
- Gornick J.C., Jäntti M., 2009, Child poverty in upper-income countries: lessons from the Luxembourg Income Study, Luxembourg Income Study Working Paper Series, Working Paper no. 509.
- Gruszczyński M., 2012, Modele zmiennych jakościowych dwumianowych, [in:] M. Gruszczyński (ed.), Mikroekonometria. Modele i metody analizy danych indywidualnych, Wolters Kluwer, pp. 71-122.
- Hokayem C., Heggeness M.L., 2014, Factors influencing transitions into and out of near poverty: 2004-2012, SEHSD Working Paper 2014-05, U.S. Census Bureau, Washington DC.
- Hosmer D.W., Lemeshow S., 2000, Applied Logistic Regression, John Wiley & Sons, Hoboken.
- Jackowska B., Wycinka E., 2011, Wykorzystanie regresji logistycznej w analizie czynników wpływa-jących na aktywne poszukiwanie pracy przez osoby długotrwale bezrobotne, Prace i Materiały Wydziału Zarządzania Uniwersytetu Gdańskiego, nr 4/8, pp. 393-403.
- Jackson C., 2016, Msm: multi-state Markov and hidden Markov models in continuous time, https://cran.r-project.org/web/packages/msm/index.html.
- Kumari D., Rajnish K., 2015, Comparing Efficiency of Software Fault Prediction Models Developed through Binary and Multinomial Logistic Regression Techniques, [in:] J.K. Mandal, S.C. Satapa-thy, M.K. Sanyal, P.P. Sarkar, A. Mukhopadhyay (eds.), Information Systems Design and Intelli-gent Applications, Proceedings of Second International Conference India 2015, 1, Springer, pp. 187-198.
- Lopez-Raton M., Rodriguez-Alvarez M. X., 2015, OptimalCutpoints: computing optimal cutpoints in diagnostic tests, https://cran.r-project.org/web/packages/OptimalCutpoints/index.html.
- McFadden D., 1977, Quantitative Methods for Analyzing Travel Behaviour of individuals: Some Recent Developments, Cowles Foundation Discussion Paper no. 474, Yale University, New Haven.
- NCAR - Research Applications Laboratory, 2015, Verification: weather forecast verification utilities, https://cran.r-project.org/web/packages/verification/index.html.
- Orshansky M., 1966, Recounting the poor - a five-year review, Social Security Bulletin, 29, pp. 20-37.
- Podgórska M., Śliwka P., Topolewski M., Wrzosek M., 2002, Łańcuchy Markowa w teorii i w zasto-sowaniach, Szkoła Główna Handlowa, Warszawa.
- Prais S.J., 1955, Measuring social mobility, Journal of the Royal Statistical Society, Series A, Part I, 118, pp. 56-66.
- R Development Core Team, 2016, R: a language and environment for statistical computing, R Foun-dation for Statistical Computing, Vienna 2016, http://www.r-project.org.
- Sączewska-Piotrowska A., 2015, Identyfikacja determinant bogactwa dochodowego z zastosowaniem modelu logitowego, Zarządzanie i Finanse, vol. 13, no. 4, part 2, pp. 241-259.
- Sączewska-Piotrowska A., 2016a, Transitions into and out of near poverty in urban and rural areas in Poland, paper presented at International Conference "19th Applications of Mathematics and Statistics in Economics", Banská Štiavnica, 31.08.2016-4.09.2016.
- Sączewska-Piotrowska A., 2016b, Zastosowanie krzywych ROC w analizie ubóstwa miejskich i wiej-skich gospodarstw domowych, Przegląd Statystyczny, vol. 63, no. 2, pp. 211-232.
- Shorrocks A.F., 1978, The measurement of mobility, Econometrica, vol. 46, no. 5, pp. 1013-1024.
- Short K., Smeeding T., Understanding income-to-threshold ratios using the supplemental poverty measure, U.S. Census Bureau Social, Economic, and Housing Statistics Division Working Paper No. 2012-18.
- Sompolska-Rzechuła A., Machowska-Szewczyk M., Chudecka-Głaz A., Cymbaluk-Płoska A., 2014, The use of logistic regression in the ovarian cancer diagnostics, Ekonometria, vol. 45, no. 3, pp. 151-164.
- Spedicato G.A., Kang T.S., Yalamanchi S.B., Thoralf M., Yadav D., 2016, Markovchain: easy hand- ling discrete time Markov chains, https://cran.r-project.org/web/packages/markovchain/ index.html.
- Warnes G. R., Bolker B., Lumley T., Johnson R. C. (2015), Gmodels: various R programming tools for model fitting, https://cran.r-project.org/web/packages/gmodels/index.html.
- Cytowane przez
- ISSN
- 1507-3866
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.15611/ekt.2016.4.06