- Autor
- d'Aubigny Gérard (University of Grenoble Alpes, France)
- Tytuł
- A Statistical Toolbox For Mining and Modeling Spatial Data
Narzędzie statystyczne do analizy eksploracyjnej oraz modelowania danych przestrzennych - Źródło
- Comparative Economic Research, 2016, vol. 19, nr 5, s. 5-24, rys., bibliogr. 38 poz.
- Słowa kluczowe
- Analiza wielowymiarowa, Informacja przestrzenna, Autokorelacja przestrzenna
Multi-dimensional analysis, Spatial information, Spatial autocorrelation - Uwagi
- summ., streszcz.
The present research benefited from a financial support by the french ministery of research and education, as relevant to the Action Concertée Incitative (ACI) program named Terrains, Techniques, Théorie: "travail interdisciplinaire en Sciences Humaines et Sociales". - Abstrakt
- Większość analiz eksploracyjnych danych przestrzennych rozpoczyna się od oceny próby jednostek przestrzennych, pod względem występowania oraz siły autokorelacji przestrzennej dla zbioru zmiennych, stanowiących atrybuty jednostek przestrzennych. Trafność aplikacji najbardziej cenionych narzędzi weryfikacji autokorelacji przestrzennej - współczynników Morana oraz Geary'ego jest rzadko kwestionowana, pomimo faktu, że w przypadku opisywania ich własności wielu użytkowników zdaje się popełniać błędy oraz wprowadzać nieład. Artykuł rozpoczyna się od krytycznej oceny klasycznej definicji indeksów. Założono, że pomimo intuicyjnej konstrukcji, koncepcja indeksów boryka się z brakiem spójności w przypadku wielu ich składowych. Następnie zaproponowano korektę współczynników autokorelacji przestrzennej, która upraszcza ich relacje, i otwiera drogę do włączenia statystyk do zestawu narzędzi statystycznych, modelowania oraz wizualizacji. W drugiej części zaprezentowano teoretyczne przesłanki konstruowania wielowymiarowych narzędzi statystycznych, uwzględniających skorygowane definicje współczynników autokorelacji przestrzennej, zaczerpnięte z ostatnich prac w dziedzinie statystyki. Przedstawione metody eksploracyjnej wielowymiarowej analizy danych charakteryzują się łatwością zastosowania oraz oprogramowania z wykorzystaniem dostępnych, darmowych pakietów. (abstrakt oryginalny)
Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran's and the Geary's coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free) software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP), valuable in exploratory spatial data analysis. (original abstract) - Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
- Pełny tekst
- Pokaż
- Bibliografia
- Anselin L. (1988), Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, Dordrecht, The Netherland.
- Anselin L. (1995), Local indicators of spatial association - LISA. Geographical Systems, 3: 1-13.
- Anselin L. & Rey S.J. (2014), Modern Spatial Econometrics in Practice, GeoDa Press LLC, Chicago IL, USA.
- Aubigny (Drouet d') G. (1989), L'Analyse Multidimensionnelle des Données de Dissimilarité, Thèse de Doctorat d'état es Sciences Mathématiques, Université Joseph Fourier - Grenoble I, France.
- Aubigny (d') G. (2006), Dépendance spatiale et auto-corrélation, in: J.-J. Droesbeke, M. Lejeune & G. Saporta (Eds.), Analyse Statistique des Données Spatiales, Editions TECHNIP, Paris, France: Chap 2: 17-45.
- Aubigny (d') G. (2009), The Analysis of Proximity Data, in: Govaert G. (Ed.), Data Analysis, John Wiley & sons Inc., Hoboken, USA: Chap 4: 93-147.
- Aubigny (d') G. (2012), Analyse contextuelle et modélisations multiniveaux des Données Electorales. Coordinateur principal, Action Concertée Incitative ʻTerrains, Techniques, Theorie: travail interdisciplinaire en Sciences Humaines et Socialesʼ. Rapport de fin de projet, Grenoble, France. 148 pages.
- Aubigny (d') C. & Aubigny (d') G. (2009), New LISA indices for spatio-temporal Data Mining, XVIèmes Rencontres de la Société Francophone de Classification, Grenoble, 2-4 Septembre, France.
- Bapat R.B. (2010), Graphs and Matrices, Springer, New York, USA.
- Belkin M. & Niyogi P. (2001), Laplacian Eigenmaps and Spectral techniques for Embedding and Clustering. Advances in Neural Information Processing Systems, 595-591.
- Belkin M. & Niyogi P. (2003), Laplacian Eigenmaps for Dimensionality Reduction and Data. Neural Computation, Vol. 15, No 6: 1373-1396.
- Belkin M., Sun J. & Wang Y. (2009), Constructing Laplace Operator from Point Clouds in . In: Proceedings of the Symposium on Discrete Algorithms, 1031-1040.
- Besag J. (1974), Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society Series B 36:192-236.
- Bollobas B. (1990), Modern Graph Theory, Springer, New-York, USA.
- Borcard D. & Legendre P. (2002), All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153 : 51-68.
- Cailliez F. & Pages A.J. (1976), Introduction à l'Analyse des Données, SMASH, Paris, France.
- Chessel D. & Mercier P. (1993), Couplage de triplets statistiques et liaisons espèce environnement. In: Biométrie et environnement. J.D. Lebreton et B. Asselin (Eds.), Masson, Paris, France, 1993.
- Chung F.R.K. (1997), Spectral Graphs Theory, American math. Society Ed., CBMS 92, USA.
- Cliff A.D. & Ord J.K. (1981), Spatial Processses: Models and Applications, Pion Limited, London, UK.
- Doyle P.G. & Snell J.L. (1984), Random Walks and Electric Networks, Carus Mathematical Monographs Number 22, The Mathematical Association of America, Washington D.C, USA.
- Dray S., Chessel D. & Thioulouse J. (2003), Co-inertia Analysis and the Linking of Ecological Data Tables. Ecology 84(11):3078-3089.
- Dray S., Legendre P. & Peres-Neto P.R. (2006), Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modeling 196: 483-493.
- Escoufier Y. (1987). The Duality Diagram: a means for better practical applications, in: Legendre P. & Legendre L. (Eds.), Developments in Numerical Ecology: NATO ASI Series, Series G: Ecological Sciences, Vol 14. Springer, New-York, USA: 139-156.
- Geary R.C. (1954), The Contiguity Ratio and Statistical Mapping. The Incorporated Statistician 5: 115-145.
- Getis A. and J.K. Ord (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24: 189-206.
- Gower J.C. (1966), Some distance properties of latent root and vector methods used in multivariate Analysis. Biometrika, 55: 325-388.
- Griffith D.A. (2000), A linear regression solution to the spatial autocorrelation problem. Journal of Geographical Systems 2: 141-156.
- Griffith D.A. (2003), Spatial Autocorrelation and Spatial Filtering: Gaining Understanding Through Theory and Scientific Visualization (Second Edition), Springer, New-York, USA.
- Lebart L. (1969), Analyse statistique de la contiguité. Publications de l'Institut de Statistique de l'Université de Paris, 28, pp. 81-112.
- Legendre P. & Legendre L (2012), Numerical Ecology (Third English Edition), ELSEVIER, Amsterdam, The Netherland.
- Moran P.A.P. (1950), Notes on continuous stochastic phenomena. Biometrika 37:17-23.
- Qiu H. & Hancock E.R. (2007), Clustering and Embedding Using Commute Times. IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 22, No 8: 888-905.
- Rosenberg S. (1997), The Laplacian on a Riemannian Manifold, Cambridge University Press, Cambridge, USA.
- Saerens M., Fouss F., Yen L. & Dupont P. (2004), The Principal Components Analysis of a Graph, and its relationships to Spectral Clustering. Proc. 15th European Conference in Machine Learning Vol. 3201: 371-383.
- Shi J. & Malik J. (2000), Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No 8: 888-905.
- Tiefelsdorf M. (2000), Modeling Spatial Processes: The identification and Analysis of Spatial Relationships in Regression Residuals by Means of Moran's I, Springer, New-York, USA.
- Torgerson W.S. (1952), Multidimensional Scaling, 1: Theory and Methods. Psychometrika, 17: 401-417.
- Whittle P. (1954), On stationary processes in the plane. Biometrika 41: 434-449.
- Cytowane przez
- ISSN
- 1508-2008
- Język
- eng
- URI / DOI
- https://doi.org/10.1515/cer-2016-0035