BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Wiechetek Łukasz (Uniwersytet Marii Curie Skłodowskiej), Pawłowski Mieczysław (Onninen Sp. z o.o.), Wiechetek Michał (Katolicki Uniwersytet Lubelski Jana Pawła II)
The Study on Customer Preferences and the Searching Process in the Online Wholesale Using Search Log Analysis
Przedsiębiorczość i Zarządzanie, 2016, t. 17, z. 11, cz. 2, s. 253-272, tab., rys., bibliogr. 20 poz.
Entrepreneurship and Management
Tytuł własny numeru
Agile Commerce - stechnologizowane zarządzanie w erze informacji
Słowa kluczowe
Segmentacja klientów, Rynek instytucjonalny, Preferencje konsumenta
Customer segmentation, Business to Business (B2B), Consumer preferences
IT systems significantly increase the flexibility of running business. Not only do sales platforms fit to the requirements of the hardware and software used by potential clients, but they also allow for precise adjustment of the offer to the consumer requirements. Data collected automatically using network traffic control devices, Web servers and sales platforms become a source of valuable information. Appropriate processing and interpretation of these data can increase the efficiency of the e-commerce. To finalize a transaction in an online store we should not only present the right offer and adopt it to the client's needs, but mainly allow the customer to reach the offer both by right page positioning as well as using proper searching engine and product characteristics that facilitates the searching process.
The aim of the article is to present how the log search analysis can be used in the process of customer segmentation and profiling. The article contains conclusions derived from statistical analysis of searches carried out by b2b clients, users of e-wholesaler. The analysis led to an initial segmentation of e-platform users. The developed user profiles, compared with the contents of shopping cart, was an incentive to make changes in the characteristics of the offered goods and functioning of searching mechanism. (original abstract)
Pełny tekst
  1. Ferguson G.A., Takane Y. (1989), Statistical analysis in psychology and education, New York: McGraw-Hill Book Company.
  2. Hadžiosmanović D., Bolzoni D., Hartel P. (2013), A log mining approach for process monitoring in SCADA, "International Journal of Information Security", Vol. 11, Issue 4, pp. 231-251.
  3. Hollink V., Tsikrika T., de Vries A.P. (2011), Semantic search log analysis: A method and a study on professional image search, "Journal of the American Society for Information Science & Technology", Vol. 62, Issue 4, pp. 691-713.
  4. Hui-Yin W., Wen-Hung L., Po-Ming Ch., Chih-Yu H., Tsai-Yen L. (2014), Logging and analyzing long-term mobile user behavior, "International Journal of Electronic Commerce Studies", Vol. 5, Issue 2, pp. 161-180.
  5. Huurnink B., Hollink L., van den Heuvel W., de Rijke M. (2010), Search behavior of media professionals at an audiovisual archive: A transaction log analysis, "Journal Of The American Society For Information Science & Technology", Vol. 61, Issue 6, pp. 1180-1197.
  6. Jansen B.J. (2006), Search log analysis: What it is, what's been done, how to do it, "Library & Information Science Research", Vol. 28, Issue 3, pp. 407-432.
  7. Jansen B.J. (2009), The Methodology of Search Log Analysis, Retrieved from:
  8. Jansen B,. Spink A. Pedersen J. (2005), A Temporal Comparison of AltaVista Web Searching, "Journal Of The American Society For Information Science & Technology", Vol. 56, Issue 6, pp. 559-570.
  9. Koshman S., Spink A., Jansen B. (2006), Web searching on the Vivisimo search engine, "Journal of The American Society For Information Science & Technology", Vol. 57, Issue 14, pp. 1875-1887.
  10. Kruschwitz U., Lungley D., Albakour M.-D., Song D. (2013), Deriving query suggestions for site search, "Journal of the American Society for Information Science & Technology", Vol. 64, Issue 10, pp. 1975-1994.
  11. Kwan Y., Beheshti J., Cole C., Leide J., Large A. (2006), User search behavior of domain-specific information retrieval systems: An analysis of the query logs from PsycINFO and ABC-Clio's Historical Abstracts/America: History and Life, "Journal Of The American Society For Information Science & Technology", Vol. 57, Issue 9, pp. 1208-1220.
  12. Lustigova Z., Brom P. (2014), Educational Datamining in Virtual Learning Environments, "International Journal of Advanced Corporate Learning", Vol. 7, Issue 1, pp. 39-42.
  13. Nadjla H., Mehraban S. (2014), Search Strategies in Nanotechnology Databases: Log Analysis, "Journal of Information Processing & Management", Vol. 29, Issue 1, pp. 233-252.
  14. Niu X., Zhang T., Chen H. (2014), Study of User Search Activities With Two Discovery Tools at an Academic Library, "International Journal of Human-Computer Interaction", Vol. 30, Issue 5, pp. 422-433.
  15. Oliner A., Ganapathi A., Xu W. (2012), Advances and Challenges in Log Analysis, "Communications of The ACM", Vol. 55, Issue 2, pp. 55-61.
  16. Peters T.A. (1989), When Smart People Fail: An Analysis of the Transaction Log of an Online Public Access Catalog, "Journal of Academic Librarianship", Vol. 15, Issue. 5, pp. 267-273.
  17. Schinka J.A., Velicer W.F., Weiner I.B. (2003), Handbook of psychology: Research methods in psychology, John Wiley and Sons.
  18. Stanisz A. (2007), Przystępny kurs statystyki: z zastosowaniem STATISTICA PL na przykładach z medycyny, t. 3. Kraków: StatSoft.
  19. Tolle J., Sehchang H. (1985), Online Search Patterns: NLM CATLINE Database, "Journal of The American Society For Information Science", Vol 36, Issue 2, pp. 82-93.
  20. Wan-Chik R., Clough P., Sanderson M. (2013), Investigating religious information searching through analysis of a search engine log, "Journal of the American Society for Information Science & Technology", Vol. 64, Issue 12, pp. 2492-2506.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu