BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Grabska Ewa (Uniwersytet Jagielloński w Krakowie)
Tytuł
Ocena możliwości wykorzystania satelitarnych danych optycznych i radarowych do identyfikacji typów użytków rolnych
Assessment of a Potential Use of Satellite Optical and Radar Data for the Identification of Agriculture Land Types
Źródło
Prace Geograficzne / Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, 2017, z. 148, s. 135-155, rys., tab., bibliogr. 51 poz.
Słowa kluczowe
Użytki rolne, Klasyfikacja, Systemy satelitarne
Agricultural land, Classification, Satellite systems
Uwagi
streszcz., summ.
Kraj/Region
Karpaty Polskie
Polish Carpathians
Abstrakt
Łączenie danych satelitarnych pochodzących z różnych źródeł jest powszechnie stosowaną techniką w badaniach dotyczących pokrycia terenu i użytkowania ziemi. Łączenie danych o różnych zakresach spektralnych pozwala m.in. na zwiększenie rozróżnialności obiektów na powierzchni Ziemi, a tym samym na osiągnięcie wyższej dokładności ich klasyfikacji. Celem opracowania jest ocena możliwości wykorzystania zintegrowanych danych optycznych (obrazy satelitarne pochodzące z satelity Landsat 8, z sensora OLI) i radarowych (obrazy pochodzące z satelity Sentinel-1A) do identyfikacji typów użytków rolnych. Obszarem testowym jest fragment Karpat Polskich - Kotlina Żywiecka, charakteryzująca się występowaniem pól uprawnych o zróżnicowanej wielkości. W artykule przetestowano sześć metod integracji danych satelitarnych (IHS, HPF, PCA, Brovey, Ehlers, transformacje falkowe) oraz dwa algorytmy klasyfikacyjne (wektory maszyn nośnych, ang. Support Vector Machines, SVM i Random Forest). Uzyskane wyniki pozwalają stwierdzić, że wykorzystanie zintegrowanych danych optycznych i radarowych jest efektywnym podejściem w klasyfikacji upraw rolnych - najwyższa uzyskana dokładność ogólna wyniosła 87,9% i została osiągnięta z wykorzystaniem klasyfikacji metodą Random Forest dla danych zintegrowanych przy użyciu techniki Ehlers. (abstrakt oryginalny)

Fusion of satellite data from different sources is a technique commonly used in studies focused on land cover and land use. Combining images of various spectral bands allows to increase objects differentiation and thereby improve overall classification accuracy. In this study, I focused on crops maps creation using integrated optical and radar data. Landsat 8 multispectral data from OLI sensor and Sentinel-1A SAR (Synthetic Aperture Radar) data were applied here. The study was performed for a test area of the Żywiec Basin, which is a part of the Polish Carpathians. The advantage of this small, agricultural region was that it is covered by a mosaic of different-size cultivated fields. I tested six methods of satellite data integration (IHS, HPF, PCA, Brovey, Ehlers and wavelet transforms) and two classification algorithms (Support Vector Machines and Random Forest). The results demonstrated that the use of integrated optical and radar data is effective for crops classification - the highest overall accuracy achieved in this study was equal to 87.9% and was obtained for Random Forest classification and Ehlers fusion. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Abdikan S., Sanli F.B., 2012, Comparison of different fusion algorithms in urban and agricultural areas using SAR ( PALSAR and RADARSAT ) and optical ( SPOT ) images, Boletim de Ciências Geodésicas, 18 ( 4 ), 509 - 531.
  2. Abe B.T., Olugbara O.O., Marwala T., 2014, Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification, Journal of Earth System Science, 123 ( 4 ), 779 - 790.
  3. Amarsaikhan D., Blotevogel H.H., Van Genderen J.L., Ganzorig M., Gantuya R., Nergui B., 2010, Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification, International Journal of Image and Data Fusion, 1 ( 1 ), 83 - 97.
  4. Balon J., German K., Kozak J., Malara H., Widacki W., Ziaja W., 1995, Regiony fizycznogeograficzne, [w :] J. Warszyńska ( red. ), Karpaty Polskie, Uniwersytet Jagielloński, Kraków, 117 - 130.
  5. Ban Y., 1996, Multi-temporal ERS-1 SAR and Landsat TM data for agricultural crop classification : An artificial neural network approach, International Archives of Photogrammetry and Remote Sensing, XXXI ( B7 ), 48 - 52.
  6. Ban Y., Gong P., Giri C., 2015, Global land cover mapping using Earth observation satellite data : Recent progresses and challenges, ISPRS Journal of Photogrammetry and Remote Sensing, 103, 1 - 6.
  7. Blaes X., Vanhalle L., Defourney P., 2005, Efficiency of crop identification based on optical and SAR image time series, Remote Sensing of Environment, 96, 352 - 356.
  8. Bochenek Z., Ciołkosz A., Filipiak K., 2000, Szacowanie powierzchni upraw z wykorzystaniem teledetekcji lotniczej i satelitarnej, Fotointerpretacja w Geografii, 31, 129 - 136.
  9. Cortes C., Vapnik V., 1995, Support-Vector Networks, Machine Learning, 20, 273 - 297.
  10. De Wit A.J.W., Clevers J.G.P.W., 2004, Efficiency and accuracy of per-field classification for operational crop mapping, International Journal of Remote Sensing, 25 ( 20 ), 4091 - 4112.
  11. Doraiswamy P., Moulin S., Cook P.W., Stern A., 2003, Crop Yield Assessment from Remote Sensing, Photogrammetric Engineering & Remote Sensing, 69 ( 6 ), 665 - 674.
  12. Forkuor G., Conrad C., Thiel M., Ullmann T., Zoungrana E., 2014, Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa, Remote Sensing, 6, 6472 - 6499.
  13. Hong G., Zhang Y., Mercer B., 2009, A wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images, Photogrammetric Engineering & Remote Sensing, 75 ( 10 ), 1213 - 1223.
  14. Horning N., 2010, Random Forests : An algorithm for image classification and generation of continuous fields data sets, International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam.
  15. Huang C., Davis L.S., Townshend J.R.G., 2002, An assessment of support vector machines for land cover classification, International Journal of Remote Sensing, 23 ( 4 ), 725 - 749.
  16. Iannini L., Molijna R.A., Hanssena R.F., 2013, Integration of Multispectral and C-Band SAR Data for Crop Classification, Remote Sensing for Agriculture, Ecosystems, and Hydrology XV. Jain M., Mondal P., DeFries R.S., Small C., Galford G.L., 2013, Mapping cropping intensity of smallholder farms : A comparison of methods using multiple sensors, Remote Sensing of Environment, 134, 210 - 223.
  17. Jewell N., 1989, An evaluation of multi-date SPOT data for agriculture and land use mapping in the United Kingdom, International Journal of Remote Sensing, 10 ( 6 ), 939 - 951.
  18. Joshi N., Baumann M., Ehammer A., Fensholt R., Grogan K., Hostert P., Jepsen M.R., Kuemmerle T., Meyfroidt P., Mitchard E.T.A., Reiche J., Ryan C.M., Waske B., 2016, A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring, Remote Sensing, 70 ( 8 ), 1 - 23.
  19. Klonus S., 2008, Comparison of pansharpening algorithms for combining radar and multispectral data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, B6b.
  20. Klonus S., Ehlers M., 2009, Performance of evaluation methods in image fusion, 12th International Conference on Information Fusion, 1409 - 1416.
  21. Kondracki J., 1998, Geografia regionalna Polski, Wydawnictwo Naukowe PWN, Warszawa.
  22. Leśniak B., Obrębska-Starklowa B., 1983, Klimat województwa bielskiego, Folia Geographica, Ser. Geogr.-Phys., XV, 21 - 49.
  23. Liu M.W., 2011, Crop type classification using satellite images of different resolutions, PhD Thesis, University of Wisconsin.
  24. Maiersperger T.K., Scaramuzza P.L., Leigh L., Shrestha S., Gallo K.P., Jenkerson C.B., Dwyer J.L 2013, Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data, Remote Sensing of Environment, 136, 1 - 13.
  25. McNairn H., Champagne C., Shang J., Holmstrom D., Reichert G., 2009, Integration of optical and Synthetic Aperture Radar ( SAR ) imagery for delivering operational annual crop inventories, ISPRSS Journal of Photogrammetry and Remote Sensing, 64, 434 - 449.
  26. Moran S.M., Hymer D.C., Qi J., Kerr Y., 2002, Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions, Remote Sensing of Environment, 79, 243 - 252.
  27. Murakami T., Ogawa S., Ishitsuka N., Kumagai K., Saito G., 2001, Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan, International Journal of Remote Sensing, 22, 1335 - 1348.
  28. Nitze I., Schulthess U., Asche H., 2012, Comparison of Machine Learning Algorithms Random Forest, Artificial Neural Network and Support Vector Machine to Maximum Likelihood for Supervised Crop Type Classification, Proceedings of the 4th GEOBIA, 035 - 040.
  29. Obrębska-Starklowa B., Hess M., Olecki Z., Trepińska J., Kowanetz L., 1995, Klimat, [w :] J. Warszyńska ( red. ), Karpaty Polskie, Uniwersytet Jagielloński, Kraków, 31 - 47.
  30. Pal M., 2005, Random forest classifier for remote sensing classification, International Journal of Remote Sensing, 26 ( 1 ), 217 - 222.
  31. Pohl C., Van Genderen J.L., 1998, Multisensor image fusion in remote sensing : concepts, methods and applications, International Journal of Remote Sensing, 19 ( 5 ), 823 - 854.
  32. Pohl C., 2013, Challenges of remote sensing image fusion to optimize earth observation data exploitation, European Scientific Journal December, 4, 355 - 365.
  33. Rodriguez-Galiano V.F., Ghimire B., Rogan J., Chica-Olmo M., Rigol-Sanchez J.P., 2012, An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93 - 104.
  34. Rosenthal W.D., Blanchard B., 1984, Active microwave responses : An aid in improved crop classification, Photogrammetric Engineering and Remote Sensing, 50 ( 4 ), 461 - 468.
  35. Roy D.P., Wulder M.A., Loveland T.R., Woodcock, C.E., Allen R.G., Anderson M.C., Helder D., Irons J.R., Johnson D.M., Kenney R., Scambos T.A., Schaaf C.B., Schott J.R., Sheng Y., Vermote E.F., Belward A.S., Bindschadler R., Cohen W.B., Gao F., Hipple J.D., Hostert P., Huntington J., Justice C.O., Kilic A., Kovalskyy V., Lee Z.P., Lymburner L., Masek J.G., McCorkel J., Shuai Y., Trezza R., Vogelmann J., Wynne R.H., Zhu Z., 2014, Landsat-8 : Science and product vision for terrestrial global change research, Remote Sensing of Environment, 145, 154 - 172.
  36. Sandholt I., 2001, The combination of polarimetric SAR with satellite SAR and optical data for classification of agricultural land, Danish Journal of Geography, 101, 21 - 32.
  37. Sarup J., Singhai A., 2011, Image fusion techniques for accurate classification of Remote Sensing data, International Journal Of Geomatics And Geosciences, 2 ( 2 ), 602 - 612.
  38. Schotten C.G.J., Van Rooy W.W.L., Janssen L.L.F., 1995, Assessment of the capabilities of multi-temporal ERS-l SAR data to discriminate between agricultural crops, International Journal of Remote Sensing, 16 ( 14 ), 2619 - 2637.
  39. Sentinel-1 Product Definition, 2011, MacDonald, Dettwiler and Associates Ltd., Richmond, B.C., Canada.
  40. Shanmugam P., Manjunath A.S., Ahn Y.H., Sanjeevi S., Ryul J.H., 2005, Application of Multisensor Fusion Techniques in Remote Sensing of Coastal Mangrove Wetlands, International Journal of Geoinformatics, 1 ( 3 ), 1 - 17.
  41. Skiba S., 1995, Pokrywa glebowa, [w:] J. Warszyńska ( red. ), Karpaty Polskie, Uniwersytet Jagielloński, Kraków, 69 - 76.
  42. Tso B., Mather P.M., 1999, Crop discrimination using multi-temporal SAR imagery, International Journal of Remote Sensing, 20 ( 12 ), 2443 - 2460.
  43. Turker M., Arikan M., 2005, Sequential masking classification of multi-temporal Landsat ETM+ images for field-based crop mapping in Karacabey, Turkey, International Journal of Remote Sensing , 26 ( 17 ), 3813 - 3830.
  44. Ulrich M., Klonus S., Ehlers M., Astrand P.J., 2007, Image fusion of multitemporal and multisensoral data, GeoInformation in Europe, 257 - 266.
  45. Wang X., Ge L., Li X., 2012, Evaluation of filters for ENVISAT ASAR speckle suppression in pasture area, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-7, 341 - 346.
  46. Warner T.A., Nellis M.D., Foody G.M., 2009, The Sage Handbook of Remote Sensing, Sage Publications Inc.
  47. Waske B., Braun M., 2009, Classifier ensembles for land cover mapping using multitemporal SAR imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 64, 450 - 457.
  48. Yan L., Roy D.P., 2014, Automated crop field extraction from multi-temporal Web Enabled Landsat Data, Remote Sensing of Environment, 144, 42 - 64.
  49. Bank Danych Lokalnych GUS, http://stat.gov.pl/ (styczeń 2016).
  50. EarthExplorer, http://earthexplorer.usgs.gov/ (styczeń 2016).
  51. EnMAP, http ://www.enmap.org (styczeń 2016).
Cytowane przez
Pokaż
ISSN
1644-3586
Język
pol
URI / DOI
http://dx.doi.org/10.4467/20833113PG.17.006.6274
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu