BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Motaweq Zahraa Y. (College of Science, Kufa University), Naher Habeeb S. (College of Medicine, Babylon University)
Antimicrobial susceptibility of Streptococcus pneumoniae isolates causing LRTI in Najaf, Iraq
Environmental & Socio-economic Studies, 2017, vol. 5, nr 2, s. 10-18, tab., wykr., bibliogr. 32 poz.
Słowa kluczowe
Medycyna, Mikrobiologia, Choroby, Leki
Medicine, Microbiology, Illness, Drugs
During the period from February 2013 to April 2014, 74 (12.3%) isolates of Streptococcus pneumoniae were isolated from 600 patients (359 males and 241 females) with clinical symptoms of Lower respiratory tract infections (LRTI) (pneumonia and COPD) obtained from Najaf/Iraq Hospitals. Patients in the age groups 51-60 years had a high percentage of S. pneumoniae isolates (19.7%) compared with other age groups with a significant variation (P<0.05) between them. Males (54%) showed a higher percentage of S. pneumoniae isolates than females (45.9%) with no significant variation (P>0.05). Smokers have been shown to have increased risk to LRTI than non-smokers (P>0.05), and there was no significant variation between Urban and Rural (56.8:43.2%) patients. S. pneumoniae showed different susceptibilities towards antibiotics used in this study. The highest rate of resistance was against erythromycin (100%), azithromycin (83.8%), clindamycin (83.8%) and trimethoprim/sulfamethaxzol (81.1%) and moderate resistance to ceftriaxone (67.6%), cefotaxime (64.9%), chloramphenicol (64.9%), tetracycline (59.5%) and benzylpenicillin (45.9%) whereas there was a relatively lower resistance towards others. The results of this study showed that S. pneumoniae isolates were found to be remarkable sensitive to Vancomycin (100%) and Imipenem (100%). In this study, sixteen antibiotics were tested for (MIC) against 37 S. pneumoniae isolates by using Vitek-2 antibiotic susceptibility testing (AST) cards (41497) AST-GP74. 100% and 83.8% of S. pneumoniae isolates were resistant to erythromycin and SXT with MIC ≥1 mg/ml and 4/76 mg/ml of these antibiotic respectively, and moderately resistant to cefotaxime 64.9%, ceftriaxone 64.9% and chloramphenicol 64.9% with MIC 4 mg/ml for CTX and CRO each one, and MIC 8 mg/ml for C only. All isolates showed 100% sensitivity for each of Vancomycin and Erythromycin with MIC mg/ml and ≤1 mg/ml and ≤2 mg/ml, respectively. S. pneumoniae isolates showed a high rate of sensitivity to Ertapenem 97.3% with MIC ≤1 mg/ml, Telithromycin 89.2% with MIC ≤1, Meropenem 86.5% with MIC ≤0.25 mg/ml.(original abstract)
Pełny tekst
  1. Al-Taaie M.J.K. 2013. Bacterial Causes of Typical Pneumonia and Immune Response of Laboratory Animals for Some Bacterial Spp. Isolated from Pneumonic Patients in Babylon Province. M. Sc. Thesis of Microbiology. College of Medicine. Univ. of Babylon.
  2. Balaban N.Q., Merrin, J., Chait R., Kowalik L., Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science, 305: 1622-1625.
  3. Bauer A.W., Kirby W.M.M., Sherris J.S., Turk M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Amer. J. Clinic. Pathol., 45:493-496.
  4. Black R.E., Cousens S., Johnson H.L. Lawn J.E., Rudan I., Bassani D.G. et al. 2010. Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet, 375: 1969-1987.
  5. Bryce J., Boschi-Pinto C., Shibuya K., Black R.E. 2005. WHO estimates of the causes of death in children. Lancet, 365: 1147-1152.
  6. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement M02-A11, M07-A9, and M11-A8. CLSI, (2014). Wayne, PA, USA.
  7. Collee J.G., Fraser A.G., Marmion B.P., Simpson S.A. 1996. Mackie and McCartney. Practical medical microbiology. 14th ed. Churchill Livingstone inc., USA.
  8. Domenech A., Ardanuy C., Calatayud L., Santos S., Fe Tubau G.I., Verdaguer R., Dorca J., Pallares R., Martin R., Linǎres J. 2011. Serotypes and genotypes of Streptococcus pneumoniae causing pneumonia and acute exacerbations in patients with chronic obstructive pulmonary disease. J. Antimicrob Chemother. (2011) 66 (3): 487-493. DOI: [Crossref]
  9. Flamm R.K., Sader H.S., Jones R.N. 2013. Antimicrobial Activity of Ceftaroline Tested against Multidrug Resistant (MDR) Streptococcus pneumoniae in the USA (2009-2012). IDWEEK. 893.
  10. Fuller J.D., Low D.E. 2005. A review of Streptococcus pneumoniae infection treatment failures associated with fluoroquinolone resistance. Clin Infect Dis, 41: 118-21. [Crossref]
  11. Gentile A., Bardach A., Ciapponi A., Garcia-Marti S., Aruj B., Glujovsky D.B., Calcagno B., Mazzoni A.P., Colindres R.E. 2012. Epidemiology of community-acquired pneumonia in children of Latin America and the Caribbean: a systematic review and meta-analysis. Int. J. Infect. Dis., 16: 5-15. [Crossref] [Web of Science]
  12. Gossens H. 2009. Antibiotic consumption and link to resistance. Clin. Microbiol. Infec., 15(suppl.3), 12-15. [Crossref]
  13. Guido F., Pascale F. 2005. Performance of the New VITEK 2 GP Card for Identification of Medically Relevant Gram-Positive Cocci in a Routine Clinical Laboratory. J. Clin Microbiol., 43(1): 84-88.
  14. Gupta D., Agarwal R., Aggarwal A.N., Singh N., Mishra N., Khilnan G.C., Samaria J.K., Gaur S.N., Jindal S.K. 2012. Guidelines for diagnosis and management of Communityacquired pneumonia in adult. Lung India (Supplement 2): 33.
  15. Iwalokun B.A., Fowora M., Akinloye O., Oluwadun A., Antonio M., Adegbola R.A. 2012. A retrospective study of clinical Streptococcus pneumoniae isolates from four health facilities in South-West Nigeria. Int. J. Medicine and Medical Sci., 4(8): 160-170.
  16. Jorgensen J.H., Crawford S.A., McElmeel L.M., Whitney C.G. 2004. Detection of resistance to gatifloxacin and moxifloxacin in Streptococcus pneumoniae with the VITEK 2 instrument. J. Clin. Microbiol., 42: 5928-5930. [Crossref]
  17. Kanj S.S., El-Dbouni O., Kanafani Z.A., Araj G.F. 2007. Antimicrobial susceptibility of respiratory pathogens at the American University of Beirut Medical Center. Int. J. Infect. Dis., 11: 554-556. [Crossref] [Web of Science]
  18. Levin A.S., Teixeira L.M., Sesselogo J.F., Barone A.A. 1996. Resistance of Streptococcus pneumoniae to antimicrobials in São Paulo, Brazil: clinical features and serotypes. Rev. Inst. Med. Tropical, 38(3): 187-192. [Crossref]
  19. Levy S.B., Marshall B. 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med., 10: S122-S129. [Crossref]
  20. Macfaddin J.F. 2000. Biochemical tests for identification of medical Bacteria. 3rd-ed, William and Wilkins, U.S.A.
  21. Maruyama T., Gabazza E.C., Morser J., Takagi T.D., Alessandro-Gabazza C. 2010. Community-acquired pneumonia and nursing home-acquired pneumonia in the very elderly patients. Respir Med., 104: 584-592.
  22. O'Brien K.L., Wolfson L.J., Watt J.P., Henkle E., Deloria-Knoll M. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet, 374: 893-902. [Web of Science]
  23. Obaro S.K. 2000. Confronting the pneumococcus: a target shift or bullet change? Vaccine, 19: 1211-1217. [Crossref]
  24. Paul J. 1997. HIV and pneumococcal infection in Africa. Microbiological aspects. Trans. R. Soc. Trop. Med. Hyg., 91: 632-637. [Crossref]
  25. Pejcic T., Dordevic I., Stankovic I., Borovac D.N., Petkovic T.R. 2011. Prognostic mortality factors of community-acquired pneumonia in the elderly. Sci. J. Fac. Med. in Nis., 28(2): 71-76.
  26. Riedel S., Beekmann S.E., Heilmann K.P., Richter S.S. GarciadeLomas J., Ferech M., Goosens H., Doern G.V. 2007. Antimicrobial use in Europe and antimicrobial resistance in Streptococcus pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis., 26: 485-490. [Crossref]
  27. Rijal B., Tandukar S., Adhikari R., Tuladhar N.R., Sharma P.R., Pokharel B.M., Gami F.C., Shah A., Sharma A., Gauchan P., Sherchand J.B., Burlakoti T., Upreti H.C., Lalitha M.K., Thomas K., Steinhoff M. 2010. Antimicrobial susceptibility pattern and serotyping of Streptococcus pneumoniae isolated from Kanti Children Hospital in Nepal. Kathmandu Univ. Med. J., 30, 8(2): 164-168.
  28. Sener B., Tunckanat F., Ulusoy S., Tünger A., Söyletir G., Mülazlmoğlu L. 2007. A survey of antibiotic resistance in Streptococcus pneumoniae and Haemophilusinfluenzae in Turkey, 2004-2005. J. Antimicrob. Chemother., 60: 587-593.
  29. Tran T.D.H., Hyog-Young K., Kim E., Kim K., Briles D.E., Pyo S., Rhee1 D. 2011. Decrease in Penicillin Susceptibility Due to Heat Shock Protein ClpL in Streptococcus pneumoniae. Antimicrob. Agents Chemother., 55(6): 2714-2728. American Society for Microbiology.
  30. Weber F.T., Dias C., da Costa M. 2010. Antimicrobial susceptibility of Streptococcus pneumoniae and genotypic characterization of erythromycin-resistant strains in Porto Alegre, Brazil. Brazilian J. Microbiology, 41: 1-5. DOI: 10.1590/S1517-83822010000100001 [Crossref] [Web of Science]
  31. Wilson M.J.B., Martin D.E. 1972. Quantitative sputum culture as a means of excluding false positive reports in the routine micrpbiology laboratory. J. Clin. Path., 25: 697-700. [Crossref]
  32. Zettler E.W., Scheibe R.M., Dias C.A.G., Santafé P., Santos D.S., Moreira J.D. Fritsher C.C. 2006. Determination of penicillin resistance in Streptococcus pneumoniae isolates from Brazil by PCR. Intern. J. Infect. Dis., 10: 110-115.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu