BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Pospieszny Przemysław (Warsaw School of Economics, Poland)
Tytuł
Application of Data Mining Techniques in Project Management - an Overview
Źródło
Roczniki Kolegium Analiz Ekonomicznych / Szkoła Główna Handlowa, 2016, nr 43, s. 199-220, wykr., bibliogr. 24 poz.
Słowa kluczowe
Oprogramowanie, Jakość oprogramowania, Zarządzanie projektem, Górnictwo
Software, Software quality, Project management, Mining sector
Uwagi
sum.
Abstrakt
In recent years data mining has been experiencing growing popularity. It has been applied for various purposes and become commonly used in day-to-day operations for knowledge discovery, especially in areas where uncertainty is substantial. Data mining is replacing traditional error prone and often ineffective techniques or is used in conjunction. Due to a large number of projects either struggling or even failing the researchers recognize its potential application in the project management discipline in order to increase project success rates. It can be used for different estimation problems like effort, duration, quality or maintenance cost. This paper presents a critical review of potential applications of data mining techniques contributing to the project management field.(original abstract)
Dostępne w
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Azzeh M., Cowling P., Neagu D., Software Stage-Effort Estimation Based on Association Rule Mining and Fuzzy Set Theory, 10th IEEE International Conference on Computer and Information Technology 2010, pp. 249-256.
  2. Bakir A., Turhan B., Bener A., A Comparative Study for Estimating Software Development Effort Intervals, "Software Quality Journal" 2011, vol. 19, pp. 537-552.
  3. Barcelos Tronto I., Simoes da Silva J., Sant'Anna N., Comparison of Artificial Neural Network and Regression Models in Software Effort Estimation, International Joint Conference on Neural Networks, Orlando 2007, pp. 771-776.
  4. Berry M., Linoff G., Data Mining Techniques for Marketing Sales and Customer Support, Wiley, USA 2004, p. 7.
  5. Boehm B., Reifer D., Software Sizing, Estimation and Risk Management, Auerbach, USA 2006, p. 10.
  6. Cubranic D., Murphy G., Automatic Bug Triage Using Text Categorization, International Conference on Software Engineering & Knowledge Engineering (SEKE) 2004, pp. 92-97.
  7. Czarnacka-Chrobot B., Standardization of Software Size Measurement, in: Internet - Technical Development and Application, eds. E. Tkacz and A. Kapczynski, Springer-Verlag, Berlin 2009, pp. 149-156.
  8. Dzega D., Pietruszkiewicz W., Classification and Metaclassification in Large Scale Data Mining Application for Estimation of Software Projects, IEEE 9th International Conference 2010.
  9. Fayyad U., Piatetsky-Shapiro G., Smyth P., From Data Mining to Knowledge Discovery in Databases, American Association for Artificial Intelligence, USA 1996.
  10. Gasik S., A Model of Project Knowledge Management, Wiley Periodicals, USA 2010, pp. 3-4.
  11. Iranmanesh S., Mokhtari Z., Application of Data Mining Tools to Predicate Completion Time of a Project, "World Academy of Science: Engineering and Technology" 2008, vol. 42.
  12. Kantardzic M., Data Mining: Concepts, Models, Methods, and Algorithms, Wiley, USA 2011.
  13. Kemerer C., An Empirical Validation of Software Cost Estimation Models, "Communication of ACM" 1987, vol. 30, pp. 416-429.
  14. Kobyliński A., ISO/IEC 9126 - Analiza Modelu Jakości Produktów Programowych, "Konferencja Systemy Wspomagania Organizacji" 2003.
  15. Larose D., Discovering Knowledge in Data, Wiley, USA 2005, pp. 11-18.
  16. Nagwani N., Bhansali A., A Data Mining Model to Predict Software Bug Complexity Using Bug Estimation and Clustering, "International Conference on Recent Trends in Information, Telecommunication and Computing" 2010, pp. 13-17.
  17. Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK®guide), Project Management Institute, USA 2013, 5th ed., pp. 27-28, 61, 226, 418.
  18. Sentas P., Angelis L., Stamelos I., Multinominal Logistic Regression Applied on Software Productivity Prediction, 9th Panhellenic Conference in Informatics, Thessaloniki 2003.
  19. Shukla R., Misra A., Estimating Software Maintenance Effort - A Neural Network Approach, "India Software Engineering Conference Proceedings" 2008, pp. 19-22.
  20. Shukla R., Misra M., Misra A., Marwala T., Clarke W., Dynamic Software Maintenance Effort Estimation Modeling Using Neural Network, Rule Engine and Multiregression Approach, "Computational Science and Its Applications - ICCSA" 2012, pp. 157-169.
  21. The Standish Group International, Chaos Summary for 2010, Boston 2010, p. 3.
  22. Villanueva Balsera J., Rodriguez Montequin V., Ortega Fernandez F., Alba González- Fanjul C., Data Mining Applied to the Improvement of Project Management, in: Data Mining Applications in Engineering and Medicine, ed. A. Karahoca, InTech 2012.
  23. Villanueva-Balsera J., Ortega-Fernandez F., Rodrigez-Montequin V., Concepcion- Suarez R., Effort Estimation in Information Systems Projects Using Data Mining Techniques, in: Proceedings of the WSEAES 13th International Conference on Computers 2009, pp. 652-657.
  24. Weiß C., Premraj R., Zimmermann T., Zeller A., How Long Will It Take to Fix This Bug?, International Conference on Software Engineering, IEEE Computer Society Washington, USA 2007.
Cytowane przez
Pokaż
ISSN
1232-4671
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu