BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Çağlayan-Akay Ebru (Marmara University, Turkey), Sedefoğlu Gülşah (Özyeğin University, Turkey)
Tytuł
What does Bayesian Probit Regression Tell us about Turkish Female- and Male-headed Households Poverty?
Źródło
Journal of International Studies, 2017, vol. 10, nr 1, s. 46-62, tab., bibliogr. 37 poz.
Słowa kluczowe
Ubóstwo, Gospodarstwa domowe, Model probitowy, Modele bayesowskie
Poverty, Households, Probit model, Bayesian models
Uwagi
Klasyfikacja JEL: I32, P36, C11, C25
summ., This study is supported by Marmara University Scientific Research Project Committee. Project number is SOSC-YLP-100216-0064
Abstrakt
The objectives of the study are to examine the determinants of the poverty status and to illustrate the probabilities of household poverty in Turkey using the Household Budget Survey which was prepared by the Turkish Statistical Institute, 2013. The data is reorganized as rural and urban area considering female- and male-headed households so that to analyze the determinants of household poverty. Bayesian probit regression is applied using a Markov Chain algorithm, Gibbs sampler. The results of the study show that the most effective variables, which cause a decrease of the probability of living under poverty line, are education level of bachelor for 4 years, master and PhD for female-headed households and household type of being single adult for male-headed households in urban area, working full time for male- and female-headed households in rural area. However, other most remarkable variables, which cause an increased risk of poverty, are being elderly, disabled or inoperable for male-headed households, being illiterate for female-headed households in urban area and for rural area, being elderly, disabled or inoperable for male- and marital status of being single for female-headed households. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Acquah, H. D. (2013). Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm. Journal of Social and Development Sciences, 4, 193-197.
  2. Adjasi, C. K., & Osei, K. A. (2007). Poverty profile and correlates of poverty in Ghana. International Journal of Social Economics, 34(7), 449-471.
  3. Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association, 88(422), 669-679.
  4. Altaleb, A., & Chauveau, D. (2002). Bayesian analysis of the Logit model and comparison of two Metropolis-Hastings strategies. Computational statistics & data analysis, 39(2), 137-152.
  5. Ataguba, J. E., Ichoku, H. E., & Fonta, W. M. (2013). Multidimensional poverty: applying the capability approach. International Journal of Economics, 40(4), 331-354.
  6. Caglayan, A., & Sedefoglu G. (2016). Determinants of Poverty on Household Characteristics in Turkey: A Heteroskedastic Probit Model. The Empirical Economics Letter, 15(6), 563-571. Retrieved from: http://www.eel.my100megs.com/volume-15-number-6.htm
  7. Cengiz, M. A., Terzi, E., Şenel T., & Murat, N. (2012). Lojistik Regresyonda Parametre Tahmininde Bayesci Bir Yaklaşım. Afyon Kocatepe University Journal of Science, 12, 15-22.
  8. Franses, P. H. (2004). A Concise Introduction to Econometrics. Cambridge: Cambridge University Press.
  9. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American statistical association, 85(410), 398-409.
  10. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and machine intelligence, 6, 721-741.
  11. Genkin, A., Lewis, D. D., & Madigan, D. (2007). Large-scale Bayesian logistic regression for text categorization. Technometrics, 49(3), 291-304.
  12. Gelman, A. (2002). Prior Distribution. Encyclopedia of Environmetrics, John Wiley & Sons.
  13. Geweke, J. (1992). Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Moments. Bayesian Statistics, 4, Oxford University Press, Oxford.
  14. Gill, J. (2015). Bayesian Methods: A Social and Behavioral Sciences Approach, Chapman & Hall/CRC.
  15. Gounder, N. (2013). Correlates of poverty in Fiji: An analysis of individual, household and community factors related to poverty. International Journal of Social Economics, 40(10), 923-938.
  16. Greene, W.H. (2002). Econometric Analysis. New Jersey. Heidelberger, P., & Welch, P. D. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109-1144.
  17. Imai, K., King, G., & Lau, O. (2008). Toward a common framework for statistical analysis and development. Journal of Computational and Graphical Statistics, 17(4), 892-913.
  18. Jackman, S. (2000). Estimation and inference via Bayesian simulation: An introduction to Markov chain Monte Carlo. American Journal of Political Science, 44(2), 375-404.
  19. Javed, Z. H., & Asif, A. (2011). Female households and poverty: A case study of Faisalabad District. International Journal of peace and development studies, 2(2), 37-44.
  20. Khalid, U., & Akhtar, S. (2011). Poverty Dynamics of Female-headed Households in Pakistan: Evidence from PIHS 2000-01 and PSLM 2004-05. PIDE Working Papers, 80, 1-25.
  21. Li, Y., Fu, X., & Zhuang, T. (2011). An Empirical Research on Influential Factors in Poverty of Peasant Households in Minority Regions in China-Based on Survey in 541 Peasant Households in Poverty-stricken Minority Counties in Sichuan Province. Journal of Agricultural Science, 3(1), 218.
  22. Long, J.S. (1997). Regression Models for Categorical and Limited Dependent Variables. SAGE Publication, California.
  23. Martin, A. D. (2008). The Oxford Handbook of Political Methodology. Oxford University Press.
  24. Gordóvil-Merino, A., Guàrdia-Olmos, J., & Peró-Cebollero, M. (2012). Estimation of Logistic Regression Models in Small Samples. A Simulation Study Using a Weakly Informative Default Prior Distribution. Psicologica: International Journal of Methodology and Experimental Psychology, 33(2), 345-361.
  25. Mila, A. L., & Michailides, T. J. (2006). Use of Bayesian methods to improve prediction of panicle and shoot blight severity of pistachio in California. Phytopathology, 96(10), 1142-1147.
  26. Nasrollahzadeh, S. (2007). The analysis of bayesian probit regression of binary and polychotomous response data. IJE Transactions B: Applications, 20(3), 237.
  27. OECD, (2013). OECD Framework for Statistics on the Distribution of Household Income, Consumption and Wealth, OECD Publication. Retrieved from: http://www.oecd.org/statistics/302013041e.pdf (18.08.2016).
  28. Oluwatayo, I. B. (2014). Gender Dimensions of Poverty and Coping Options among Smallholder Farmers in Eastern Nigeria. Mediterranean Journal of Social Sciences, 5(27), 49-61.
  29. Sekwati, L., Narayana, N., & Raboloko, M. (2013). Understanding the nature of household poverty in Botswana. Pula: Botswana Journal of African Studies, 26(1), 71-82.
  30. Smith, T. E., & LeSage, J. P. (2004). A Bayesian probit model with spatial dependencies. Spatial and Spatiotemporal Econometrics Advances in Econometrics, 18, 127-160.
  31. Sorensen, D., & Gianola, D. (2002). Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Springer.
  32. Szulc, A. (2006). Poverty in Poland during the 1990s: are the results robust?. Review of Income and Wealth, 52(3), 423-448.
  33. Tektaş, D., & Günay, S. (2008). A Bayesian Approach to Parameter Estimation in Dichotomous Logit and Probit Models. Hacettepe Journal of Mathematics and Statistics, 37(2).
  34. Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics, 22(4), 1701-1728.
  35. Wilde, J. (2008). A simple representation of the Bera-Jarque-Lee test for probit models. Economics Letters, 101(2), 119-121.
  36. Yatchew, A., & Grilliches, Z. (1985). Specification error in probit models. Review of economic statistics, 67(1), 134-139.
  37. Zellner, A., & Rossi, P. E. (1984). Bayesian analysis of dichotomous quantal response models. Journal of Econometrics, 25(3), 365-393.
Cytowane przez
Pokaż
ISSN
2071-8330
Język
eng
URI / DOI
http://dx.doi.org/10.14254/2071-8330.2017/10-1/3
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu