BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Kubus Mariusz (Opole University of Technology, Poland)
Tytuł
Locally Regularized Linear Regression in the Valuation of Real Estate
Źródło
Statistics in Transition, 2016, vol. 17, nr 3, s. 515-524, tab., bibliogr. s. 522-524
Słowa kluczowe
Modele regresji, Regresja liniowa, Wycena nieruchomości, Walidacja
Regression models, Linear regression, Real estate valuation, Validation
Uwagi
summ., Materiały z konferencji Multivariate Statistical Analysis 2015, Łódź
Firma/Organizacja

Abstrakt
Regression methods are used for the valuation of real estate in the comparative approach. The basis for the valuation is a data set of similar properties, for which sales transactions were concluded within a short period of time. Large and standardized databases, which meet the requirements of the Polish Financial Supervision Authority, are created in Poland and used by the banks involved in mortgage lending, for example. We assume that in the case of large data sets of transactions, it is more advantageous to build local regression models than a global model. Additionally, we propose a local feature selection via regularization. The empirical research carried out on three data sets from real estate market confirmed the effectiveness of this approach. We paid special attention to the model quality assessment using cross-validation for estimation of the residual standard error. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. BITNER, A., (2007). Konstrukcja modelu regresji wielorakiej przy wycenie nieruchomości [Construction of the multiple regression model in real estate valuation], Acta Scientiarum Polonorum, Administratio Locorum, 6 (4), pp. 59-66.
  2. DOSZYN, M., (2012). Ekonometryczna wycena nieruchomości [Econometric evaluation of real estate], Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania Uniwersytetu Szczecińskiego, No. 26, pp. 41-52, Szczecin.
  3. EFRON, B., HASTIE, T., JOHNSTONE, I., TIBSHIRANI, R., (2004). Least Angle Regression, ,,Annals of Statistics" 32 (2), pp. 407-499.
  4. FORYŚ, I., (2010). Wykorzystanie metod taksonomicznych do wyboru obiektów podobnych w procesie wyceny lokali mieszkalnych [The multivariate analysis using to the choice the similar object in the housing valuation process], Studia i Materiały Towarzystwa Naukowego Nieruchomości, Vol. 18, No. 1, pp. 95-105, TNN, Olsztyn.
  5. HARRISON, D., RUBINFELD, D. L., (1978). Hedonic prices and the demand for clean air, J. Environ. Economics & Management, Vol. 5, 81-102.
  6. HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edition, Springer, New York.
  7. HOERL, A. E., KENNARD, R., (1970). Ridge regression: biased estimation for nonorthogonal problems, ,,Technometrics" 12, pp. 55- 67.
  8. HOZER, J., (ed.), (2008). Wycena nieruchomości [Real estate valuation], KEiS US, IADiPG w Szczecinie, Szczecin.
  9. KUBUS, M., (2013). On model selection in some regularized linear regression methods, Acta Universitatis Lodziensis, Folia Oeconomica 285, pp. 115-223.
  10. LIS, C., (2001). Sieci neuronowe a masowa wycena nieruchomości [Neural networks and the mass valuation of real estate], Zeszyty Naukowe US, No 318, Prace Katedry Ekonometrii i Statystyki, Szczecin.
  11. LIS, C., (2005). Ekonometryczne modele cen transakcyjnych lokali mieszkalnych [Econometric models transaction prices of residential premises], Zeszyty Naukowe US, No. 415, Prace Katedry Ekonometrii i Statystyki, No. 16, Szczecin.
  12. LOADER, C., (1999). Local Regression and Likelihood, Springer, New York.
  13. MACH, Ł., (2012). Determinanty ekonomiczno-gospodarcze oraz ich wpływ na rozwój rynku nieruchomości mieszkaniowych [Economic determinants and their impact on development of residential real estate market], Ekonometria, 4 (38), pp. 106- 116.
  14. MADDALA, G. S., (2008). Ekonometria [Econometrics], PWN, Warszawa.
  15. MORAJDA, J., (2005). Wykorzystanie perceptronowych sieci neuronowych w zagadnieniu wyceny nieruchomości [The use of perceptrons neural networks in the issue of real estate valuation], Zeszyty Naukowe Małopolskiej Wyższej Szkoły Ekonomicznej w Tarnowie, 7, pp. 101- 108.
  16. TIBSHIRANI, R., (1996). Regression shrinkage and selection via the lasso, J.Royal. Statist. Soc. B., 58, pp. 267-288.
  17. TRZĘSIOK, J., TRZĘSIOK, M., (2009). Nieparametryczne metody regresji [Nonparametric regression methods], [in:] M. Walesiak, E. Gatnar (eds), Statystyczna analiza danych z wykorzystaniem programu R [Statistical data analysis with a use of R program], Wydawnictwo Naukowe PWN, Warszawa, pp.156-192.
  18. TRZĘSIOK, M., (2013). Wycena rynkowej wartości nieruchomości z wykorzystaniem wybranych metod wielowymiarowej analizy statystycznej [Real estate market value estimation based on multivariate statistical analysis], Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, No. 278, Taksonomia 20, Klasyfikacja i analiza danych - teoria i zastosowania, pp. 188-196.
  19. ZELIAŚ, A., (2006). Kilka uwag na temat doboru zmiennych występujących na rynku nieruchomości [Several remarks about the methods of selecting variables occurring on the real estate market], Zeszyty Naukowe US, No 450, Prace Katedry Ekonometrii i Statystyki, No. 17, pp. 685-696, Szczecin.
  20. ZOU, H., HASTIE, T., (2005). Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society Series B, 67 (2), pp.301-320.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu