BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Prabhash Kumar (Tata Memorial Hospital, India), Patil Vijay M. (Tata Memorial Hospital, India), Noronha Vanita (Tata Memorial Hospital, India), Joshi Amit (Tata Memorial Hospital, India), Bhattacharjee Atanu (Chiltern Clinical Research Ltd, India)
Bayesian Accelerated Failure Time and its Application in Chemotherapy Drug Treatment Trial
Statistics in Transition, 2016, vol. 17, nr 4, s. 671-690, tab., rys., bibliogr. s. 686-690
Słowa kluczowe
Analiza przeżycia, Medycyna, Statystyka
Survival analysis, Medicine, Statistics
The Cox proportional hazards model (CPH) is normally applied in clinical trial data analysis, but it can generate severe problems with breaking the proportion hazard assumption. An accelerated failure time (AFT) is considered as an alternative to the proportional hazard model. The model can be used through consideration of different covariates of interest and random effects in each section. The model is simple to fit by using OpenBugs software and is revealed to be a good fit to the Chemotherapy data. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Pełny tekst
  1. ANDERSON, J. E., LOUIS, T. A., (1995). Survival analysis using a scale change random effects model. Journal of the American Statistical Association, 90, 669-679.
  2. AGGARWAL, S. K. (1998). Calcium modulation of toxicities due to Cis-platin. Met Based Drugs, 5, 77-81.
  3. BUCKLEY ,J., JAMES, I., (1979). Linear Regression with Censored Data. Biometrika, 66 (3), 429-436.
  4. CHIOU, S. H., KANG, S., KIM, J., YAN, J., (2014a). Marginal Semipara-metric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations. Lifetime Data Analysis, 24 (4), 599-618.
  5. CHIOU, S. H., KANG, S., KIM, J., YAN, J., (2014b). Fast Accelerated Failure Time Modeling for Case-Cohort Data. Statistics and Computing, 24 (4), 559-568.
  6. CELMINS, A., (1987). Least squares model fitting to fuzzy vector data. Fuzzy sets and systems, 22 (3), 245-269.
  7. CHRISTENSEN, C., JOHNSON, J. W., (1988). Modelling accelerated failure time with a Dirichlet process. Biometrika, 75, 693-704.
  8. CLAVEL, M., VERMORKEN, J. B., COGNETTI, F., et al., (1994). Randomized comparison of cisplatin, methotrexate, bleomycin and vincristine (CABO) versus cisplatin and 5-fluorouracil (CF) versus cisplatin (C) in recurrent or metastatic squamous cell carcinoma of the head and neck A phase III study of the EORTC Head and Neck Cancer Cooperative Group. Annals of Oncology, 5 (6), 521- 526.
  9. COX, D. R., (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society, 34 (2), 187 -220.
  10. DAVID, C., (2003). Modelling Survival Data in Medical Research. Chapman Hall/CRC Texts in Statistical Science.
  11. FOLKMAN, J., (1971). Tumor angiogenesis: therapeutic implications N Engl J Med, 285, 1182-1186.
  12. GHOSH, S. K., GHOSAL, S., (2006). Semiparametric Accelerated Failure Time Models for Censored Data. Bayesian Statistics and Its Applications. Anamaya Publishers.
  13. HANSON, T., JOHNSON, W. O., (2004). A Bayesian semiparametric aft model for interval-censored data. J. Comput. Graph. Statist, 13, 341361.
  14. HANAHAN, D., FOLKMAN, J., (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353-364.
  15. HANAHAN, D., BERGERS, G., BERGSLAND, E., (2000). Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiongenesis in mice., J Clin Invest, 105, 1045-1047.
  16. HOROWITZ, J. L., (1999). Semiparametric estimation of a proportional hazard model with unobserved heterogeneity. Econometrica, 67, 10011028.
  17. HOUGAARD, P., MYGLEGAARD, P., JOHNSEN, K. B., (1994). Heterogeneity models of disease susceptibility with application to diabetic nephropathy. Biometrics, 50, 1178-1188.
  18. JIN, Z., HUANG, L., (2007). lss: An S-PLUS/R Program for the Accelerated Failure Time Model to Right Censored Data Based on Least-Squares Principle. Computer Methods and Programs in Biomedicine, 86 (1), 45- 50.
  19. KALBEISCH, J. D., PRENTICE, R. L., (2002). The Statistical Analysis of Failure Time Data. John Wiley Sons.
  20. KOMAREK, A., E. LESAFFRE, E., (2008). Bayesian Accelerated Failure Time Model With Multivariate Doubly Interval-Censored Data and Flexible Distributional Assumptions. Journal of the American Statistical Association, 103 (482), 523-533.
  21. KOMAREK, A., LESAFFRE, E., (2007). Bayesian Accelerated Failure Time Model for Correlated Interval-Censored Data with a Normal Mixture as Error Distribution. Statistica Sinica, 7, 549-569.
  22. KOMAREK, A., HILTON, J. F., (2005). Accelerated failure time model for arbitrarily censored data with smoothed error distribution. J. Comput. Graph. Statis, 14, 726-745.
  23. KLEMENT, G., HUANG, P., MAYER, B., GREEN, S. K., MAN, S., BOHLEN, P., HICKLIN, D., KERBEL, R. S., (2002). Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-vegfr-2 antibody in multidrug-resistant human breast cancer xeno-grafts. Clin Cancer Res, 8 (1), 221-232.
  24. KLEIN, J. P., PELZ, C., ZHANG, M., (1999). Modeling random effects for censored data by a multivariate normal regression model. Biometrics, 54, 497-506.
  25. MORTON, R. P., RUGMAN, F., DORMAN, E. B., STONEY, P. J., WILSON, J. A., MCCORMICK, M., VEEVERS, A., STELL, P. M., (1985). Cisplatinum and bleomycin for advanced or recurrent squamous cell carcinoma of the head and neck: a randomised factorial phase III controlled trial. Cancer chemotherapy and pharmacology, 15 (3), 283-289.
  26. MUNOZ , R., MAN, S., SHAKED, Y., LEE, C. R., WONG, J., G., FRANCIA AND KERBEL, R. S. (2006). Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral uft-cyclophosphamide metronomic chemotherapy. Cancer Res, 66, 3386-3391.
  27. NGUYEN, HUNG, T., WU, (2006). Fundamentals of statistics with fuzzy data. Berlin Springer.
  28. POLVERINI, P. J., NOVAK, R. F., (1986). Inhibition of angiogenesis by the antineoplastic agents mitoxantrone and bisantrene. Biochem Biophys Res Comunication, 140, 901-907.
  29. PRENTICS, R. L., (1978). Linear Rank Tests with Right Censored Data. Biometrika, 65 (1), 167-180.
  30. PAN, W., (2001). Using frailties in the accelerated failure time model. Lifetime Data Analysis, 7, 55-64.
  31. PICKLES, A., CROUCHLEY, R., (1995). A comparison of frailty models for multivariate survival data. Statistics in Medicine, 14, 1447-1461.
  32. SARGENT, D. J., (1998). A general framework for random effects survival analysis in the Cox proportional hazards setting. Biometrics, 54, 14861497.
  33. WALKER, S., MALLICK, B. K., (1999). A Bayesian Semiparametric Accelerated Failure Time Model. Biometrics, 55 (2), 477-483.
  34. WALKER, S. G., MALLICK, B. K., (1997). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical, Society B , 59, 845-860.
  35. WALKER, S., MALLICK, B. K., (1999). A Bayesian Semiparametric Accelerated Failure Time Model. Biometrics, 55 (2), 447-483.
  36. SPIEGELHALTER, D. J., BEST, N. G., CARLIN, B. P., LINDEVAN, D. A., (2002). Bayesian measures of model complexity and fit. J. Roy. Statist. Soc. Ser. B., 64, 583- 616.
  37. SURENDIRAN, A., BALAMURUGAN, N., GUNASEELAN, K., AKHTAR, S., REDDY, K. S., ADITHAN, C., (2010). Adverse drug reaction profile of cisplatin-based chemotherapy regimen in a tertiary care hospital in India: An evaluative study. Indian J Pharmacol, 42 (1), 40-43.
  38. THERNEAU, T., (2014). "survival: A Package for Survival Analysis in S. R package version". R package version 2, 37-7.
  39. TSIATIS, A. A., (1990). Estimating Regression Parameters Using Linear Rank Tests for Censored Data. The Annals of Statistics, 18 (1), 354-372.
  40. WITTES, R. E., CVITKOVIC, E., SHAH, J., GEROLD, F. P., STRONG, E. W., (1976). CIS-Dichlorodiammineplatinum (II) in the treatment of epidermoid carcinoma of the head and neck. Cancer treatment reports, 61 (3), 359-366.
  41. YABUUCHI, Y., WATADA, JUNZO, NAKAMORI, Y., (1997). Fuzzy principal component analysis for fuzzy data. Fuzzy Systems, 1997., Proceedings of the Sixth IEEE International Conference on, 2, 1127-1132.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu