- Autor
- Singh Housila P. (Vikram University, India), Mehta Vishal (Indian Statistical Institute (ISI), North-East Centre, India)
- Tytuł
- Improved Estimation of the Scale Parameter for Log-Logistic Distribution Using Balanced Ranked Set Sampling
- Źródło
- Statistics in Transition, 2017, vol. 18, nr 1, s. 53-74, tab., , bibliogr. s. 72-74
- Słowa kluczowe
- Estymatory, Badania reprezentacyjne
Estimators, Sampling survey - Uwagi
- summ.
- Abstrakt
- In this article we have suggested some improved estimators of a scale parameter of log-logistic distribution (LLD) under a situation where the units in a sample can be ordered by judgement method without any error. We have also suggested some linear shrinkage estimator of a scale parameter of LLD. Efficiency comparisons are also made in this work. (original abstract)
- Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach - Pełny tekst
- Pokaż
- Bibliografia
- AHMAD, M. I., SINCLAIR, C. D., WERRITTY, A., (1988). Log-logistic flood frequency analysis. J Hydrol, 98, pp. 205- 224.
- BALAKRISHNAN, N., MALIK, H. J., (1987). Best linear unbiased estimation of location and scale parameter of the log-logistic distribution. Commun Stat Theory Methods, 16, pp. 3477-3495.
- BENNETT, S., (1983). Log-logistic regression models for survival data. J R Stat Soc, Ser C 32, pp. 165-171.
- CHEN, Z., BAI, Z., SINHA, B. K., (2004). Ranked set sampling, theory and applications. Lecture Notes in Statistics, Springer, New York.
- FISK, P. R., (1961). The graduation of income distributions. Econometrica, 29, pp.171-185.
- GESKUS, R. B., (2001). Methods for estimating the AIDS incubation time distribution when data of seroconversion is censored. Stat Med, 20, 795- 812.
- LESITHA, G., THOMAS, P. Y., (2012). Estimation of the scale parameter of A LOG-LOGISTICS DISTRIBUTION. METRIKA, DOI 10.1007/S00184-012-0397-5.
- MCINTYRE, G. A., (1952). A method for unbiased selective sampling using ranked sets. Aust J Agric Res, 3, pp. 385-390.
- MEHTA, V., (2015). Estimation in Morgenstern Type Bivariate Exponential Distribution with Known Coefficient of Variation by Ranked Set Sampling. Proceeding of the "30th M. P. Young Scientist Congress" (MPYSC-2015), M. P. Council of Science and Technology, Vigyan Bhawan, Nehru Nagar, Bhopal -462 003, Madhya Pradesh, India.
- MEHTA, V., SINGH, H. P., (2014). Shrinkage Estimators of Parameters of Morgenstern Type Bivariate Logistic Distribution Using Ranked Set Sampling. Journal of Basic and Applied Engineering Research (JBAER), 1 (13), pp. 1-6.
- MUTTLAK, H. A., (1997). Median ranked set sampling. J Appl Stat Sci. 6, pp.245-255.
- RAGAB, A., GREEN, J., (1984). On order statistics from the log-logistic distribution and their properties. Commun Stat Theory Methods, 13, pp.2713-2724.
- ROBSON, A., REED, D., (1999). Flood estimation handbook, 3. Statistical procedures for flood frequency estimation. Institute of Hydrology, Wallingford, UK.
- SHOUKRI, M. M., MIAN, I. U. M., TRACY, D., (1988). Sampling properties of estimators of log-logistic distribution with application to Canadian precipitation data. Can J Stat, 16, pp. 223-236.
- SINGH, H. P., MEHTA, V., (2013). An Improved Estimation of Parameters of Morgenstern Type Bivariate Logistic Distribution Using Ranked Set Sampling. STATISTICA, 73 (4), pp. 437-461.
- SINGH, H. P., MEHTA, V., (2016a). Improved Estimation of Scale Parameter of Morgenstern Type Bivariate Uniform Distribution Using Ranked Set Sampling. Communications in Statistics - Theory and Methods, 45 (5), pp.1466-1476.
- SINGH, H. P., MEHTA, V., (2014a). Linear shrinkage estimator of scale parameter of Morgenstern type bivariate logistic distribution using ranked set sampling. Model Assisted Statistics and Applications (MASA), 9, pp. 295-307.
- SINGH, H. P., MEHTA, V., (2014b). An Alternative Estimation of the Scale Parameter for Morgenstern Type Bivariate Log-Logistic Distribution Using Ranked Set Sampling. Journal of Reliability and Statistical Studies, 7 (1), pp.19-29.
- SINGH, H. P., MEHTA, V., (2015). Estimation of Scale Parameter of a Morgenstern Type Bivariate Uniform Distribution Using Censored Ranked Set Samples. Model Assisted Statistics and Applications (MASA), 10, pp.139-153.
- SINGH, H. P., MEHTA, V., (2016b). Some Classes of Shrinkage Estimators in the Morgenstern Type Bivariate Exponential Distribution Using Ranked Set Sampling. Hacettepe Journal of Mathematics and Statistics, 45 (2), pp.575-591.
- SINGH, H. P., MEHTA, V., (2016c). A Class of Shrinkage Estimators of Scale Parameter of Uniform Distribution Based on K- Record Values. National Academy Science Letters, 39, pp. 221-227.
- Cytowane przez
- ISSN
- 1234-7655
- Język
- eng