BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Gąsior Daria (Institute of Ceramics and Building Materials, Poland), Tic Wilhelm Jan (Opole University of Technology, Poland)
Tytuł
Biochar Application in the Mercury Ions Adsorption from Aqueous Solutions
Zastosowanie biowęgla w procesie adsorpcji jonów rtęci z roztworów wodnych
Źródło
Economic and Environmental Studies, 2016, nr 4, s. 803-818, tab., rys., bibliogr. 40 poz.
Słowa kluczowe
Rozwój zrównoważony, Zanieczyszczenie wód, Gospodarka odpadami, Emisja zanieczyszczeń, Osady ściekowe
Sustainable development, Water pollution, Waste management, Pollution emission, Sewage sludge
Uwagi
summ., streszcz.
Abstrakt
Biowęgiel zdefiniować można jako bogaty w węgiel produkt otrzymany poprzez termiczny rozkład materii organicznej w warunkach beztlenowych lub z nieznacznym udziałem tlenu. Usuwanie zanieczyszczeń z wody z zastosowaniem biowęgla stanowi opłacalne ekonomiczne, zgodne z założeniami zrównoważonego rozwoju rozwiązanie. W pracy analizowano stopień adsorpcji jonów rtęci na pirolizowanych odpadach organicznych pochodzących z kurzeńca, osadu ściekowego oraz słomy żytniej. Wyniki badań zestawiono z potencjałem adsorpcyjnym węgli aktywnych o różnym pochodzeniu i uziarnieniu. Określono wpływ pH, ilości dodawanych adsorbentów oraz czasu kontaktu adsorbenta z adsorptywem na wydajność procesu adsorpcji. Badane biowęgle charakteryzowały się dużą powierzchnią właściwą, a ich potencjał adsorpcyjny był porównywalny z potencjałem węgli aktywnych. (abstrakt oryginalny)

Biochar is the carbon-rich product produced by thermal decomposition of organic material in anaerobic conditions or under limited supply of oxygen. The removal of pollutants from water using biochar materials is a low cost, sustainable approach for providing pure water. The adsorption of mercury ions onto pyrolyzed chicken manure, sewage sludge and rye straw was studied and compared with the adsorption of mercury ions onto commercial activated carbons of various origins and grain size. The impact of pH, biochar adsorbents amount and phase contact time on the adsorption efficiency were investigated. Tested biochars were characterized by large, porous surface area and their adsorption potential was comparable with the activated carbons. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Agarwal, H.; Sharma, D.; Sindhu, S.K.; Tyagi, S.; Ikram, S. (2010). Removal of mercury from wastewater use of green adsorbents - a review. Electronic Journal of Environmental, Agricultural and Food Chemistry 9(9): 1155-1558.
  2. Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99: 19-33.
  3. Anacleto, A.L.; Carvalho, J.R. (1996). Mercury cementation from chloride solutions using iron, zinc and aluminium. Minerals Engineering 9(4): 385-397.
  4. Asasian N.; Kaghazchi T. (2015). Sulfurized activated carbons and their mercury adsorption/desorption behavior in aqueous phase. International Journal of Environmental Science and Technology 12(8): 2511-2522.
  5. Asasian, N.; Kaghazchi, T.; Soleimani, M. (2012). Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. Journal of Industrial and Engineering Chemistry 18: 283-289.
  6. Bis, Z. (2012). Biowęgiel - powrót do przeszłości, szansa dla przyszłości. Czysta Energia 6. Available at: http://kie.is.pcz.pl/images/biowegiel.pdf. Accessed 10 April 2016.
  7. Blue, L.Y.; Jana, P.; Atwood, D.A. (2010). Aqueous mercury precipitation with the synthetic dithiolate, BDTH2. Fuel 89(6): 1326-1330.
  8. Byrne, H.E.; Mazyck, D.W. (2009). Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites. Journal of Hazardous Materials 170(2-3): 915-919.
  9. Chiarle, S.; Ratto, M.; Rovatti, M. (2000). Mercury removal from water by ion exchange resins adsorption, Water Research 34(11): 2971-2978.
  10. EBC (2012). European Biochar Certificate-Guidelines for a sustainable production of biochar. Arbaz (Switzerland): European Biochar Foundation (EBC). Available at: http://www.european-biochar.org/en/download. Accessed 10 April 2016.
  11. Fábrega, M.; Guimarães, A.S.; Resende, G.P.S.; Mansur, M. B. (2016). Solvent extraction of mercury(II) from aqueous chloride solutions using Cyanex 302. Mineral Processing and Extractive Metallurgy, Section C: Source of the Document Transactions of the Institutions of Mining and Metallurgy: 1-6.
  12. Fulbright, H.H.; Leaphart, M.; Van Brunt, V. (1997). Extraction and precipitation chemistry for mercury recovery from aqueous wastes. Separation Science and Technology 32(1-4): 373-386.
  13. Han, D.S.; Orillano, M.; Khodary, A.; Duan, Y.; Batchelor, B.; Abdel-Wahaba, A. (2014). Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg(II)) from water. Water Research 53: 310-321.
  14. Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R. (2011). Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Science of The Total Environment 409(3): 631-637.
  15. Huang, S.; Ma, Ch.; Liao, Y.; Min, Ch.; Du, P.; Jiang, Y. (2016). Removal of mercury(II) from aqueous solutions by adsorption on poly(1-amino-5-chloroanthraquinone) nanofibrils: Equilibrium, kinetics, and mechanism studies. Journal of Nanomaterials: 1-11.
  16. Huang, Y.; Du, J.R.; Zhang, Y.; Lawless, D.; Feng, X. (2015). Removal of mercury (II) from wastewater by polyvinylamine-enhanced ultrafiltration. Separation and Purification Technology 154: 1-10.
  17. Kaghazchi, T.; Kolur, N.A.; Soleimani, M. (2010). Licorice residue and Pistachio-nut shell mixture: A promising precursor for activated carbon. Journal of Industrial and Engineering Chemistry 16(3): 368-374.
  18. Kong, H.; He, J.; Gao, Y.; Wu, H.; Zhu, X. (2011). Cosorption of Phenanthrene and Mercury(II) from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry 59: 12116-12123.
  19. Korzyści środowiskowe i ekonomiczne z klastrów biowęglowych w Europie Środkowej. Rozwój polityki dotyczącej biowęgla - materiały krajowe, E2BEBIS (Environmental and Economic Benefits from Biochar Clusters in the Central Area), nr projektu 4CE53P3 (2014). Available at: http://www.icimb.pl/opole/images/stories/Aktualnosci/e2bebis/CD_PL_final.pdf. Accessed 10 April 2016.
  20. Ku, Y.; Wu, M.-H.; Shen, Y.-S. (2002). Mercury removal from aqueous solutions by zinc cementation. Waste Management 22(7): 721-726.
  21. Litter, M.I. (2009). Treatment of Chromium, Mercury, Lead, Uranium, and Arsenic in Water by Heterogeneous Photocatalysis. Advances in Chemical Engineering 36: 37-67.
  22. Lloyd-Jones P. et al. (2004). Mercury sorption from aqueous solution by chelating ion exchange resins, activated carbon and a biosorbent. Institution of Chemical Engineers: Part B: Process Safety and Environmental Protection 82(B4): 301-311.
  23. Lu, X.; Jiang, J.; Sun, K.; Wang, J.; Zhang, Y. (2014). Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Marine Pollution Bulletin 78(1-2): 69-76.
  24. Lu, X.; Jiang, J.; Sun, K.; Xie, X.; Hu, Y. (2012). Surface modification ion, characterization and adsorptive properties of a coconut activated carbon. Applied Surface Science 258: 8247-8252.
  25. Malińska, K., (2012): Biowęgiel odpowiedzią na aktualne problem ochrony środowiska, Inżynieria i Ochrona Środowiska 15(4): 387-403.
  26. Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresource Technology 160: 191-202.
  27. Nanseu-Njiki, Ch.P.; Tchamango, S.R.; Ngom, P.C.; Darchen, A.; Ngameni, E. (2009). Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes. Journal of Hazardous Materials 168(2-3): 1430-1436.
  28. Oehmen, A.; Vergel, D.; Fradinho, J.; Reis, M.A.M.; Crespo J.G.; Velizarov S. (2014). Mercury removal from water streams through the ion exchange membrane bioreactor concept. Journal of Hazardous Materials 264: 65- 70.
  29. Paranavithana, G.; Inoue, K.Y.; Saito, T.; Vithanage, M.; Kalpage, C.S.; Herath, G.B.B. (2016). Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environmental Earth Sciences 75(484): 1-12.
  30. Reddy, M.L.P.; Francis, T. (2001). Recent advances in the solvent extraction of mercury(II) with calixarenes and crown ethers. Solvent Extraction and Ion Exchange 19: 839-863.
  31. Regulation of the Minister of Environment of 18 November 2014 on the conditions that should be met during the disposal of waste into water or ground and on substances particularly harmful to the water environment, Journal of Laws of year 2014b, no. 0, item 1800, annex no. 4.
  32. Regulation of the Minister of Environment of 21 December 2015 establishing the criteria for and the way of classifying the state of uniform parts of groundwater, Journal of Laws of year 2016, no. 0, item 85.
  33. Regulation of the Minister of Environment of 22 October 2014 establishing the way of classifying the state of uniform parts of surface waters and environmental quality standards for priority substances, Journal of Laws of year 2014a, no. 0, item 1482, annex no. 9.
  34. Regulation of the Minister of Health of 13 November 2015 on the quality of water intended for human consumption, Journal of Laws of year 2015, no. 0, item 1989, annex no. 2.
  35. Santana, A.J.; dos Santos, W.N.L.; Silva, L.O.B.; das Virgens, C.F. (2016). Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies. Environmental Monitoring and Assessment 188: 293-304.
  36. Schimmelpfennig, S.; Glaser, B. (2012). One step forward toward characterization: Some important material properties to distinguish biochars. Journal of Environmental Quality 41(4): 1001-1013.
  37. Schmidt, H-P. (2012). 55 Uses of Biochar. Ithaka Journal 1: 286-289. Available at: http://www.ithakajournal.net/druckversionen/e082012-55-uses-of-bc.pdf. Accessed 10 April 2016.
  38. Tchounwou, P.B.; Ayensu, W.K..; Ninashvili, N.; Sutton, D. (2003). Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology 18(3): 149-175.
  39. Yao, H.; Lu, J.; Wu, J.; Lu, Z.; Wilson, P.Ch.; Shen, Y. (2013). Adsorption of fluoroquinolone antibiotics by wastewater sludge biochar: role of the sludge source. Water, Air, & Soil Pollution 224: 1-9.
  40. Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, R.; Cao, X.; Pullammanappallil, P.; Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials 190: 501-507.
Cytowane przez
Pokaż
ISSN
2081-8319
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu