BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Biskup Dariusz (Akademia Ekonomiczna we Wrocławiu)
Tytuł
Bayesowski wybór modelu w regresji wielomianowej
Bayesian Model Choice in Multinomial Regression
Źródło
Prace Naukowe Akademii Ekonomicznej we Wrocławiu. Ekonometria (18), 2007, nr 1151, s. 50-63, rys., tab., bibliogr. 10 poz.
Tytuł własny numeru
Zastosowania metod ilościowych
Słowa kluczowe
Modele regresji, Algorytmy, Symulacja
Regression models, Algorithms, Simulation
Uwagi
summ.
Abstrakt
W artykule opisane zostanie zagadnienie wyboru modelu regresji jednej zmiennej, opisującej zależność pomiędzy zmienną objaśnianą Y a zmienną objaśniającą X, w sytuacji gdy funkcja regresji jest wielomianem dowolnego stopnia. (fragment tekstu)

The paper presents the problem of model choice in multinomial regression. The Bayesian solution to this problem has been presented in which the optimal model choice is equivalent to finding the model that is the most probable one. Computation of the model probabilities has been performed using the general algorithm of Reversible Jump Markov Chain Monte Carlo, which has been adapted to the specific problem of multinomial regression. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Bibliografia
Pokaż
  1. Aitkin M., Posterior Bayes Factors, "Journal of the Royal Statistical Society: Series В (Statistical Methodology)" 1991, vol. 53, s. 111-142.
  2. Berger J.O., Pericchi L.R., The Intrinsic Bayes Factor for Model Selection and Prediction, "Journal of American Statistical Association" 1996, 91, s. 109-122.
  3. Brooks S.P., Giudici P., Roberts G.O., Efficient Construction of Reversible Jump Markov Chain Monte Carlo Proposal Distributions, "Journal of the Royal Statistical Society: Series В (Statistical Methodology)" 2003, vol. 65, Issue 1.
  4. Green P., Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination, "Biometrika 1995, 82, 711-732.
  5. Han C., Carlin B.P., MCMC Methods for Computing Bayes Factors: a Comparative Review, "Journal of American Statistical Association" 2001, 96, s. 1122-1132.
  6. Highly Structured Stochastic Systems, red. P.J. Green. N. Hjort, S. Richardson, University Press, Oxford 2003.
  7. O'Hagan A., Fractional Bayes Factors for Model Comparison, "Journal of the Royal Statistical Society: Series В (Statistical Methodology)" 1995, vol. 57, s. 99-138.
  8. Osiewalski J., Bayesowska estymacja i predykcja dla jednorównaniowych modeli ekonometrycznych, AE, Kraków 1991.
  9. Osiewalski J., Pipień M., Bayesian Comparison of Bivariate ARCH-Type Models for the Main Exchange Rates in Poland, "Journal of Econometrics" 2004, 123.
  10. Shafer G., Lindley's Paradox, "Journal of American Statistical Association" 1982, vol. 77, s. 325-334.
Cytowane przez
Pokaż
ISSN
0324-8445
1507-3866
Język
pol
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu