BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Klamkowski Krzysztof (Research Institute of Horticulture, Skierniewice), Treder Waldemar (Research Institute of Horticulture, Skierniewice)
Estimating the Substrate Water Status Using Capacitance Measurements
Infrastruktura i Ekologia Terenów Wiejskich, 2017, nr II/1, s. 521-533, rys., tab., bibliogr. 22 poz.
Infrastructure and Ecology of Rural Areas
Słowa kluczowe
Produkcja roślinna, Woda, Eksperyment badawczy, Wyniki badań
Crop production, Water, Scientific experiment, Research results
The suitability of capacitance probes for measuring the actual variations in substrate water content in container-grown ornamental species (Lawson cypress) was examined. The probes were installed in the plant containers. Weighing measurement data on water loss was used to assess the actual changes in substrate water content (plant water use). In an additional test, an evaluation of temperature sensitivity of the capacitance probe was performed under laboratory conditions. The probe was placed in a container containing the growing medium (peat substrate) with a defined (stable) moisture content. The substrate temperature was modified and the changes in probe output were recorded. The experiment demonstrated the existence of the effect of temperature on the quality of soil moisture measurements conducted with the capacitance method. The accuracy of the results obtained from measurements with dielectric sensors in relation to the data obtained by means of weighing platforms depended largely on the temperature profile of the measured medium. It was demonstrated that temperature variations explained 99% of the observed differences in the results of moisture content measured with the capacitance method. Due to the fact that there is no possibility of developing universal factors (for different sensors and substrates) for correcting the influence of temperature, this relationship should be defined independently for a given type of crop and the measuring system available. (original abstract)
Pełny tekst
  1. Bussi C., Huguet J.G., Besset J., Girard T. (1999). Irrigation scheduling of an early maturing peach cultivar using tensiometers and diurnal changes in stem diameter. Fruits, 54, 57-66.
  2. Campbell C.S. (2002). Response of ECH2O soil moisture sensor to temperature variation. Decagon Devices, Pullman, WA, USA, Application Note 13394-01.
  3. Chanzy A., Gaudu J.C., Marloie O. (2012). Correcting the temperature influence on soil capacitance sensors using diurnal temperature and water content cycles. Sensors, 12, 9773-9790.
  4. Christensen N.B. (2005). Irrigation management using soil moisture monitors. Proceedings of Western Nutrient Management Conference 6, 46-53. Salt Lake City, USA.
  5. De Graaf, R. (1988). Automation of the water supply of glasshouse crops by means of calculating the evapotranspiration and measuring the amount of drainage water. Acta Horticulturae, 229, 219-231
  6. Drnevich V.P., Lovell J., Tishmak J., Yu X. (2001). Temperature effects on dielectric constant determined by time domain reflectometry. In: Proceedings of the Innovative Applications of TDR Technology (TDR '01), Evanston, III, USA, Northwestern University, September 2001.
  7. Howell T.A., Schneider A.D., Dusek D.A., Marek T.H., Steiner J.L. (1995). Calibration and scale performance of bushland weighing lysimeters. Transactions of the ASAE, 38, 1019-1024.
  8. Jones H.G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of Experimental Botany, 55, 2427-2436.
  9. Jovicich, E., Cantliffe, D.J., Stoffella, P.J., Vansickle, J.J. (2003). Reduced fertigation of soilless greenhouse peppers improves fruit yield and quality. Acta Horticulturae, 609, 193-196.
  10. Klamkowski K., Treder W. (2008). Kalibracja sond pojemnościowych dla wybranych podłoży organicznych i mineralnych. Zeszyty Naukowe ISK, 16, 205-211.
  11. Marek T., Piccinni G., Schneider A., Howell T., Jett M., Dusek D. (2006). Weighing lysimeters for the determination of crop water requirements and crop coefficients. Applied Engineering in Agriculture, 22, 851-856.
  12. Pepin, S. and Livingston, N. J. (1995). Temperature-dependent measurement errors in time domain reflectometry determinations of soil water. Soil Science Society of America Journal, 59, 38-43.
  13. Prehn, A.E., Owen, J.S., Warren, S.L., Bilderback, T.E., Albano, J.P. (2010). Comparison of water management in container-grown nursery crops using leaching fraction or weight-based on demand irrigation control. Journal of Environmental Horticulture, 28, 117-123.
  14. Rolbiecki S., Chmura K. (2015). Comparison of water needs of true millet in the region of Bydgoszcz and Wrocław. Infrastruktura i Ekologia Terenów Wiejskich, 2, 787-795.
  15. Seyfield M.S., Grant L.E. (2007). Temperature effects on soil dielectric properties measured at 50 MHz. Vadose Zone Journal, 6, 759-765.
  16. Treder J., Treder W., Borkowska A., Klamkowski K. (2015)a. Wpływ metod sterowania nawadnianiem poinsecji na wzrost i pokrój roślin. Infrastruktura i Ekologia Terenów Wiejskich, 2, 269-278.
  17. Treder W., Tryngiel-Gać A., Klamkowski K. (2015)b. Potrzeby wodne matecznika truskawki prowadzonego pod osłonami. Infrastruktura i Ekologia Terenów Wiejskich, 2, 221-232.
  18. Treder W., Treder J., Matysiak B., Orlikowski L., Czajka M., Klamkowski K., TryngielGać A. (2015)c. Integrowane nawadnianie szkółek roślin ozdobnych - główne założenia projektu IRRINURS. Infrastruktura i Ekologia Terenów Wiejskich, 2, 183-195.
  19. Verhoef A., Fernandez-Galvez J., Diaz-Espejo A., Main B.E., El-Bishti M. (2006). The diurnal course of soil moisture as measured by various dielectric sensors: Effects of soil temperature and the implications for evaporation estimates. Journal of Hydrology, 321, 147-162.
  20. Wraith J.M., Or D. (1999). Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: experimental evidence and hypothesis development. Water Resources Research, 35, 361-369.
  21. Zazueta F. S., Xina J. (1994). Soil moisture sensors. Bulletin 292. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, USA.
  22. Żarski J., Dudek S., Renata Kuśmierek-Tomaszewska R. (2011). Potrzeby i efekty nawadniania ziemniaka na obszarach szczególnie deficytowych w wodę. Infrastruktura i Ekologia Terenów Wiejskich, 5, 175-182.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu