BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Bogacz-Radomska Ludmiła (Uniwersytet Ekonomiczny we Wrocławiu), Harasym Joanna (Uniwersytet Ekonomiczny we Wrocławiu)
Tytuł
UVA Radiation Enhancement of β-carotene Yields in Rhodotorula mucilaginosa
Zwiększenie produkcji beta-karotenu w drożdżach Rhodotorula mucilaginosa pod wpływem promieniowania UVA
Źródło
Nauki Inżynierskie i Technologie / Uniwersytet Ekonomiczny we Wrocławiu, 2016, nr 3 (22), s. 9-20, rys., tab., bibliogr. 36 poz.
Engineering Sciences and Technologies / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Biotechnologia, Mikrobiologia
Biotechnology, Microbiology
Uwagi
streszcz., summ.
Abstrakt
Badano wpływ promieniowania UVA i VIS na biosyntezę β-karotenu przez drożdże Rhodotorula mucilaginosa. Określano wpływ promieniowania charakterystycznego na wzrost biomasy, zużycie substratu i produkcję β-karotenu we wgłębnej hodowli okresowej prowadzonej w bioreaktorze. Zastosowano trzy różne rodzaje źródeł światła: VIS - 15 W, zakres długości fali od 400 do 800 nm, największa emisja przy 420 nm; UVA1 - 18 W, zakres długości fali od 350 do 430 nm, największa emisja przy 370 nm; UVA2 - 20 W, zakres długości fali od 350 do 575 nm, największa emisja przy 350 nm. W kulturach prowadzonych za pomocą promieniowania UVA otrzymano najwyższe stężenie β-karotenu i karotenoidów, odpowiednio 63,20 μg/gs.m. i 0,97 mg/gs.m. W hodowlach napromieniowanych lampą VIS uzyskano niższe stężenie β-karotenu (43,60 μg/gs.m) i karotenoidów (0,83 mg/gs.m). Promieniowanie ultrafioletowe ze szczytem emisji promieniowania przy 370 nm promowało produkcję β-karotenu i karotenoidów w komórkach drożdży Rhodotorula mucilaginosa.(abstrakt oryginalny)

The influence of UVA and VIS radiation on the β-carotene biosynthesis by yeast Rhodotorula mucilaginosa was studied. The impact of radiation characteristic on biomass growth, substrate consumption and β-carotene production in submerged batch culture in bioreactor was studied. Three different types of light sources were used in the experiment: VIS - 15 W, wavelength range from 400 to 800 nm, the largest emission at 420 nm; UVA - 18 W, blue light, wavelength range of 350 to 430 nm, the largest emission at 370 nm; UVA - 20 W, wavelength range from 350 to 575 nm, the largest emission at 350 nm. In cultures conducted with UVA - 18 W radiation the highest β-carotene and carotenoids cellular concentration were achieved, respectively 63.20 μg/gd.w. and 0.97 mg/gd.w.. In cultures subject to VIS radiation a lower β-carotene concentration at 43.60 μg/gd.w. and the total carotenoids concentration at 0.83 mg/gd.w. was obtained. The ultraviolet radiation with the emission peak of radiation at 370 nm promoted the β-carotene and carotenoids production in yeast Rhodotorula mucilaginosa.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Almeida J.R.M., Fávaro L.C.L., Quirino B.F., 2012, Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste, Biotechnology for Biofuels J., Vol. 5, No. 48.
  2. Berman J., Zorrilla-López U., Farré G., Zhu C., Sandmann G., Twyman R.M., Capell T., Christou P., 2014, Nutritionally important carotenoids as consumer products, Phytochemistry Reviews J. Vol. 14, pp. 727-743.
  3. Bhosale P., Gadre R.V., 2002, Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant 32 of Rhodotorula glutinis, Letters in Applied Microbiology, Vol. 34, pp. 349-353.
  4. Braunwald T., Schwemmlein L., Graeff-Hönninger S., French W.T., Hernandez R., Holmes W.E., Claupein W., 2013, Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis, Applied Microbiology and Biotechnology, Vol. 97, pp. 6581-6588.
  5. Breierová E., Gregor T., Marová I., Certík M., Kogan G., 2008, Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass, Chemistry& Biodiversity, Vol. 5, pp. 440-446.
  6. Cardoso L.A.C., Jäckel S., Karp S.G., Framboisier X., Chevalot I., Marc I., 2016, Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol, Bioresource Technology, Vol. 200, pp. 374-379.
  7. Čertík M., Hanusova V., Breierova E., Marova I., Rapta P., 2009, Biotechnological production and properties of carotenoid pigments, Biocatalysis and Agricultural Biotechnology, Tailor and Francis Group LLt, Vol. 415.
  8. Cutzu R., Clemente A., Reis A., Nobre B., Mannazzu I., Roseiro J., Lopes da Silva T., 2013, Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry, Journal of Industrial Microbiology Biotechnology, Vol. 40, pp. 865-875.
  9. Davoli, P., Mierau, V., Weber, R.W.S., 2004, Carotenoids and Fatty Acids in Red Yeasts Sporobolomyces roseus and Rhodotorula glutinis, Applied Biochemistry and Microbiology, Vol. 40, pp. 392-397.
  10. del Campo J.A., Rodriguez H., Moreno J., Vargas M.A., Rivas J., Guerrero M.G., 2001, Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor, Journal of Biotechnology, Vol. 85, pp. 289-295.
  11. Dodd J.C., 1986, Elements of pond design and construction, In Handbook of Microalgal Mass Culture, CRC Press. Boca Rata., Richmond, 1986, pp. 265-283.
  12. Frengova G.I., Beshkova D.M., 2009, Carotenoids from Rhodotorula and Phaffia: yeasts of biotechno-logical importance, Journal of Industrial Microbiology and Biotechnology, Vol. 36, pp. 163-180.
  13. Garcia-Gonzalez M., Moreno J., Manzano J.C., Florencio F.J., Guerrora M.G., 2005, Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor, Journal of Biotechnology, Vol. 115, No. 1, pp. 81-90.
  14. Harasym J., Oledzki R., 2014, Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma, Nutrition, Vol. 30, pp. 511-517.
  15. Lee J.J.L., Chen L., Cao B., Chen W.N., 2016, Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture, Applied Microbiology and Biotechnology, Vol. 100, pp. 869-877.
  16. Mahmoud A.G.Y., Abo-Shady M.A., El-Sheekh M.M., Hamza W., 2014, The role of some stress factors including hydrogen peroxide, methylen blue, sodium chloride and ultraviolet on Rhodotorula glutinis DBVPG # 4400 total carotenoids production, International Journal of Biosciences, Vol. 4, No. 9, pp. 10-19.
  17. Malisorn C., Suntornsuk W., 2009, Improved β-carotene production of Rhodotorula glutinis in fermented radish brine by continuous cultivation, Biochemical Engineering J., Vol. 43, pp. 27-32.
  18. Marchal L., Mojaat-Guemir M., Foucault A., Prevost J., 2013, Prevost Centrifugal partition extraction of β-carotene from Dunaliella salina for efficient and biocompatible recovery of metabolites, Bioresource Technology, Vol. 134, pp. 396-400.
  19. Marova I., Carnecka M., Halienova A., Certik M., Dvorakova T., Haronikova A., 2012, Use of several waste substrates for carotenoid-rich yeast biomass production, Journal of Environmental Management, Environmental Risks and Problems, Strategies to reduce them through Biotechnology and Engineering, Vol. 95, Supplement, pp. 338-342.
  20. Mirończuk A.M., Rakicka M., Biegalska A., Rymowicz W., Dobrowolski A., 2015, A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol, Bioresource Technology, Vol. 198, pp. 445-455.
  21. Mogedas B., Casal C., Forjan E., Vilchez C., 2009, β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors, Journal of Bioscience and Bioengineering, Vol. 108, No. 1, pp. 47-51.
  22. Moliné M., Flores M.R., Libkind D., Diéguez M. del C., Farías M.E., van Broock M., 2010, Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin, Photochemical and Photobiological Sciences. Off. Journal of European Photochemistry. Association of European Society of Photobiology, Vol. 9, pp. 1145-1151.
  23. Mykolaiovych R.O., Volodymyrovych T.Y., Ivanovych C.S., Hryhorovyc T.V., Viktorovych D.S., Pavlivna K.V., 2008, Device for concentration of carotene-containing biomass of micro-alga Dunaliella salina, Patent, no UA20070008450U 20070723.
  24. Oswald W.J., 1988, Large-scale algal culture systems (engineering aspects), In Micro-Algal Biotechnology, Cambridge University Press, Cambridge, pp. 357-394.
  25. Petrik S., Marova, I., Haronikova, A., Kostovova, I., Breierova, E., 2013, Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production - a comparative screening study, Annual Microbiology, Vol. 63, pp. 1537--1551.
  26. Pietkiewicz J., Janczar M., Leśniak W., 2005, Monitorowanie aktywności oddechowe drobnoustrojów na podstawie analizy składu gazów pofermentacyjnych, Inżynieria i Aparatura Chemiczna, Vol. 4, pp. 74-76.
  27. Pietkiewicz J., Podgórski W., Leśniak W., 1987, Bioreaktor laboratoryjny Biomer, III Ogólnokrajowa Sesja Naukowa, Postępy Inżynierii Bioreaktorowej Łódź'87, Conference materials, red. H. Michalski, Łódź, Wyd. Zakł. Poligraf. PŁ, pp. 38-46.
  28. Rywińska A., Juszczyk P., Wojtatowicz M., Robak M., Lazar Z., Tomaszewska L., Rymowicz W., 2013, Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications, Biomass Bioenergy, Vol. 48, pp. 148-166.
  29. Sandmann G., 2015, Carotenoids of biotechnological importance, Advances in Biochemical Engi- neering/Biotechnology, Vol. 148, pp. 449-467.
  30. Sant'Anna V., Gurak P.D., Ferreira Marczak L.D., Tessaro I.C., 2013, Tracking bioactive compounds with colour changes in foods - A review, Dyes Pigments, Vol. 98, pp. 601-608.
  31. Simova E.D., Frengova, G.I., Beshkova, D.M., 2004, Synthesis of carotenoids by Rhodotorula mucilaginosa GED8 co-cultured with yogurt starter cultures in whey ultrafiltrate, Journal of Industrial Microbiology and Biotechnology, Vol. 31, pp. 115-121.
  32. Stachowiak B., Czarnecki Z., 2007, Effect of light on carotenoids yield in fed cultures of Phaffia rhodozyma CBS 5626, Polish Journal of Food and Nutrition Sciences, Vol. 57, No. 3A, pp. 129- -131.
  33. Taccari M., Canonico L., Comitini F., Mannazzu I., Ciani M., 2012, Screening of yeasts for growth on crude glycerol and optimization of biomass production, Bioresource Technology, Vol. 110, pp. 488-495.
  34. Zhang Z., Zhang X., Tan T., 2014, Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high temperature and dark/low-temperature cultivation, Bioresource Technology, Vol. 157, pp. 149-153.
  35. Zhang Z.-Q., Cao W.-T., Liu J., Cao Y., Su Y.-X., Chen Y.-M., 2016, Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults, Osteoporosis International, Vol. 27, pp. 1593-1601.
  36. Zhi-Wei Yea, jian-Guo Jianga, Guang-Hong Wub, 2008, Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects, Biotechnology Advances, Vol. 26, No. 4, pp. 352-360.
Cytowane przez
Pokaż
ISSN
2080-5985
Język
eng
URI / DOI
http://dx.doi.org/10.15611/nit.2016.3.01
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu