BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Chatti Saloua (University of Tunis)
Tytuł
The Semantics and Pragmatics of the Conditional in al-Fārābī's and Avicenna's Theories
Źródło
Studia Humana, 2017, vol. 6(1), s. 5-17, bibliogr. 15 poz.
Słowa kluczowe
Filozofia, Poglądy filozoficzne, Badania porównawcze
Philosophy, Philosophical thought, Comparative examination
Uwagi
summ.
Abstrakt
In this paper, I examine al-Fārābī's and Avicenna's conceptions of the conditional. I show that there are significant differences between the two frames, despite their closeness. Al-Fārābī distinguishes between an accidental conditional and two "essential" conditionals. The accidental conditional can occur only once and pragmatically involves succession. In the first "essential" conditional, the consequent follows regularly the antecedent; pragmatically it involves likeliness. The second "essential" conditional can be either complete or incomplete. Semantically the former means "if and only if"; pragmatically it means "necessarily if and only if". The latter is expressed by 'if, then' and means entailment; pragmatically, it involves necessity and the inclusion of the antecedent into the consequent. As to Avicenna, he rejects explicitly al-Fārābī's complete conditional and distinguishes between the luzūm (real implication) and what he calls ittifāq. He quantifies over situations (or times) to express the various conditionals. The two universals AC and EC are expressed by "In all situations, if..., then...", while the two particulars IC and OC are expressed by "In some situations, if..., then..". This gives them a modal connotation, and makes the universals close to strict implications. Pragmatically, AC presupposes the truth of the antecedent, but there is no such presupposition in EC, while what is presupposed in both IC and OC is a (possible) conjunction. Despite these differences, in both systems, the conditional is not truth functional, unlike the Stoic conditional.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Al-Fārābī, Abū Nasr. al-Alfāḍ al-mustaʿmala fī al-mantiq, second edition by Mohsen Mehdi, Beirut: Dar al Mashriq, 1968.
  2. Al-Fārābī, Abū Naṣr. Kitāb al-Maqūlāt, In. Rafik Al Ajam (ed.), al-Manṭiq 'inda al-Fārābī, Vol. 1, Beirut: Dar el Machriq, 1986a, pp. 89-132.
  3. Al-Fārābī, Abū Naṣr, Kitāb al-Qiyās, In. Rafik Al Ajam (ed.), al-Manṭiq 'inda al-Fārābī, Vol. 2, Beirut: Dar el Machriq, 1986b, pp. 11-64 4.
  4. Al-Fārābī, Abū Nasr. al-Maqūlāt, In. M. Tekī dench Proh (ed.), Al Mantiqiyāt lil Fārābī, vol. 1, Maktabat Ayat allah al-udhma al-marʻachi al-najafi, 1988a.
  5. Al-Fārābī, Abū Nasr. al-Qiyās, In. M. Tekī dench Proh (ed.), Al Mantiqiyāt lil Fārābī, vol. 1, Maktabat Ayat allah al-udhma al-marʻachi al-najafi, 1988b.
  6. Avicenna. al-Shifā', al-Mantiq 4: al-Qiyās, S. Zayed (ed.), Cairo: Wizarat al Thaqafa wa-l-Irsad al qawmi, 1964.
  7. Avicenna. Al-Ishārāt wat-tanbīhāt, with the commentary of N. Tūsi, Part 1, Third edition, Cairo: Dar el Maʻārif, 1971.
  8. Bobzien, S. Ancient Logic, Stanford Encyclopedia of Philosophy. Ed. Edward N. Zalta. 2006. Available online at: http://plato.stanford.edu/entries/logic-ancient/.
  9. Chatti, S. Syncategoremata in Arabic Logic, al-Fārābī and Avicenna, History and philosophy of logic, 35:2, 2014, pp. 167-197
  10. Hodges, W. Mathematical Background to the Logic of Avicenna, 2016. Book, Unpublished. Available at: http://wilfridhodges.co.uk/arabic44.pdf
  11. Hodges, W. Ibn Sīnā's Propositional Logic, 2014, talk available at: http://wilfridhodges.co.uk/arabic43.pdf 17
  12. Movahed, Z. A critical examination of Ibn Sīna's Theory of the Conditional syllogism, Sophia Perennis, Vol 1, N° 1, 2009. Available online in: www.ensani.ir/storage/Files/20120507101758- 9055-5.pdf
  13. Rescher, N. Studies in the history of Arabic logic, University of Pittsburg Press, 1963 (Arabic translation by Mohamed Mahrane, 1992).
  14. Shehaby N. The propositional Logic of Avicenna. A translation from al Shifā, al Qiyās, Dordrecht: Kluwer, D. Reidel, 1973.
  15. Strawson, P. F. Introduction to Logical Theory, London: Methuen, 1952
Cytowane przez
Pokaż
ISSN
2299-0518
Język
eng
URI / DOI
http://dx.doi.org/10.1515/sh-2017-0002
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu