BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Xi Jianxiang (High-Tech Institute of Xi'an, China; Tsinghua University, Beijing, China), Yao Zhicheng (High-Tech Institute of Xi'an, China), Liu Guangbin (High-Tech Institute of Xi'an, China), Zhong Yisheng (Tsinghua University, Beijing, China)
Robust L2 Consensus of High-Order Swarm Systems with Time-Varying Delays
Control and Cybernetics, 2014, vol. 43, nr 1, s. 59-77, rys., bibliogr. s. 75-77
Słowa kluczowe
Odporne metody statystyczne, Teoria kontroli, Teoria systemów
Robust statistical methods, Control theory, Theory of systems
Consensus problems for high-order continuous-time swarm systems in directed networks with time delays, uncertainties and external disturbances are investigated. Firstly, the state space of a swarm system is decomposed into a consensus subspace (CS) and a complement consensus space (CCS). A necessary and sufficient condition for the system with time delays and uncertainties to achieve consensus is presented based on the state projection on CCS, and an explicit expression of the consensus function is shown on the basis of the state projection on CS. Then, a sufficient condition for the system to achieve consensus with a desired L2 performance is given. Finally, numerical simulations are shown to demonstrate theoretical results. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Pełny tekst
  1. BOYD, S., GHAOUI, L. E., FERON, E. and BALAKRISHNAN, V. (1994) Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA.
  2. CAI, N., and ZHONG, Y. S. (2010) Formation controllability of high order linear time-invariant swarm systems. IET Control Theory Appl. 4 (4) 646-654.
  3. CAI, N. XI, J. and ZHONG, Y. (2011) Swarm stability of high-order linear time-invariant swarm systems. IET Control Theory Appl. 5 (2) 402-408.
  4. GAHINET, P., NEMIROVSKII, A., LAUB, A. J. and CHILALI, M. (1994) LMI Control Toolbox User's Guide. The Math Works, Natick, MA.
  5. GODSIL, C. and ROYAL, G. (2001) Algebraic Graph Theory. New York: Springer-Verlag.
  6. JADBABAIE, A., LIN, J. and MORSE, A. S. (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48 (6) 988-1001.
  7. LAWTON, J. R. and BEARD, W. (2002) Synchronized multiple spacecraft rotations. Automatica 38 (8) 1359 1364.
  8. LIN, P., JIA, Y. and LI, L. (2008) Distributed robust H∞ consensus control in directed networks of agents with time-delay. Syst. Control Lett. 57 (8) 643-653.
  9. LIU, Y. and JIA, Y. (2009) H∞ consensus control of multi-agent systems with switching topology: a dynamic output feedback protocol. Int. J. Control 83 (3) 527-537.
  10. MERRIS, R. (1998) A note on Laplacian graph eigenvalues. Linear Algebra Appl. 285 (1) 33-35.
  11. OLFATI-SABER, R. and MURRAY, R. M. (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49 (9) 1520-1533.
  12. OLFATI-SABER, R. (2006) Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51 (3) 401-420.
  13. PORFIRI, M., STILWELL, D. J. and BOLLT, E. M. (2008) Synchronization in random weighted directed networks. IEEE Trans Cir. Syst. I, Fundam. Theory Appl. 55 (10) 3170-3177.
  14. REN, W. (2004) Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control. PhD thesis, Brigham Young University.
  15. REN, W., MOORE, K. L. and CHEN, Y. (2007) High-order and model reference consensus algorithms in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control 129 (5) 678-688.
  16. REN W. (2010) Consensus tracking under directed interaction topologies: algorithms and experiments. IEEE Trans. Control Syst. Tech. 18 (1) 230-237.
  17. SUN, Y. G. andWANG L. (2009) Consensus of multi-agent systems in directed networks with nonuniform time varying delays. IEEE Trans. Autom. Control 54 (7) 1607-1613.
  18. VICSEK, T., CZIROK, A., BEN-JACOB, E., COHEN, I. and SHOCHET, O. (1995) Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (6) 1226-1229.
  19. VIDYASAGAR, M. (1993) Nonlinear Systems Analysis. Prentice-Hall Englewood Cliffs, N.J.
  20. WANG, J., CHENG, D. and HU, X. (2008) Consensus of multi-agent linear dynamic systems. Asian J. Control 10 (1) 144-155.
  21. WU, M., HE, Y., SHE, J. H. and LIU G. P. (2004) Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 40 (8) 1435-1439.
  22. XI, J., CAI, N. and ZHONG, Y. (2013) Consensus of swarm systems with time delays and interaction uncertainties. IET Control Theory Appl. 7 (8) 1168-1178.
  23. XIAO, F. and WANG, L. (2007) Consensus problems for high-dimensional multi-agent systems. IET Control Theory Appl. 1 (3) 830-837.
  24. XIAO, F., WANG, L., CHEN, J. and GAO, Y. (2009) Finite-time formation control for multi-agent systems. Automatica 45 (11) 2605-2611.
  25. XI, J., SHI, Z. and ZHONG, Y. (2011) Robust consensualization of uncertain swarm systems with time-varying delays. Syst. Control Lett. Revised.
  26. XI, J., CAI, N. and ZHONG, Y. (2010) Consensus problems for high-order linear time-invariant swarm systems. Physica A 389 (24) 5619-5627.
  27. YU, W., CHEN, G., WANG, Z. and YANG, W. (2009) Distributed consensus filtering in sensor networks. IEEE Trans. Syst., Man, Cybern. B, Cybern. 39 (6) 1568-1577.
  28. ZHU, J., TIAN, Y. P. and KUANG, J. (2009) On the general consensus protocol of multi-agent systems with double-integrator dynamics. Linear Algebra Appl. 431 (5) 701-715.
  29. ZHU, J. (2011) On consensus speed of multi-agent systems with double-integrator dynamics. Linear Algebra Appl. 434 (1) 294-306.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu