BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Maciejewski Wojciech (University of Pedagogy Krakow), Kordecki Wojciech (Witelon State University of Applied Sciences in Legnica)
Tytuł
A Method of Assigning a Global Preference Index
Źródło
Operations Research and Decisions, 2017, vol. 27, no. 2, s. 59-75, rys., tab., bibliogr. 13 poz.
Słowa kluczowe
Proces decyzyjny, Podejmowanie decyzji, Preferencje, Szkolnictwo wyższe
Decision proces, Decision making, Preferences, Higher education
Uwagi
summ.
Abstrakt
The issue of decision-making has been examined based on the preferences of the entire population, when the preferences of a few subpopulations varying significantly in size are known. The purpose of assigning global preferences according to the coefficients proposed here was to avoid marginalising the preferences of the smaller subpopulations. The preference coefficients for the population have been assigned using a weighted arithmetic mean, where the weights are the square roots of the sizes of the subpopulations. This is similar to the voting system known as the "Jagiellonian compromise". The statistical properties of these constants were presented in the context of decision making. These results have been illustrated by way of an example where the subpopulations exhibit significant differences, viz. students' choice of an economics university in Lower Silesia, Poland. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. BYSTRICKÝ R., Different approaches to weighted voting systems based on preferential positions, Kybernetika, 2012, 48, 536-549.
  2. CHAMBERLIN J.R., COURANT P.N., Representative deliberation and representative decisions. Proportional representation and the Borda rule, Am. Polit. Sci. Rev., 1983, 77 (3), 718-733.
  3. HART L.B., Faultless Facilitation. The New Complete Resource Guide for Team Leaders and Facilitators, Chapter 8. Multi-Voting: A Decision-Making Method, HRD Press, Amherst, MA, 1996, 129-134.
  4. HOETING J.A., MADIGAN D., RAFTERY A.E., VOLINSKY C.T., Bayesian model averaging. A tutorial, Stat. Sci., 1999, 140 (4), 382-417.
  5. LAPPÄNEN H., GRÖNROOS C., The hybrid consumer. Exploring the drivers of a new consumer behavior type, Technical Report 543, Hanken School of Economics, Department of Marketing, Helsinki 2009.
  6. LAU J., IOANNIDIS J.P., SCHMID C.H., Summing up evidence. One answer is not always enough, Lancet, 1998, 351, 123-127.
  7. MONROE B.L., Fully proportional representation, Am. Polit. Sci. Rev., 1995, 89 (4), 925-940.
  8. OSTASIEWICZ S., OSTASIEWICZ W., Means and their applications, Ann. Oper. Res., 2000, 97, 337-355.
  9. RATZER E., On the "Jagiellonian compromise" - voting in the European Union, 2006, URL http://www.inference.phy.cam.ac.uk/ear23/voting/voting.pdf. Accessed: 2015-12-19.
  10. ROGELBERG S.G., BARNES-FARRELL J.L., LOWE C.A., The stepladder technique. An alternative group structure facilitating effective decision making, J. Appl. Psych., 1992, 770 (5), 730-737.
  11. SŁOMCZYŃSKI W., ŻYCZKOWSKI K., Penrose voting system and optimal quota, Acta Phys. Polon. B, 2006, 37, 3133-3143.
  12. WANG X., GAO Z., GUO H., Delphi method for estimating uncertainty distributions, Information, Int. Inter. J., 2012, 150 (2), 449-460, URL http://orsc.edu.cn/online/100830.pdf
  13. ŻYCZKOWSKI K., SŁOMCZYŃSKI W., Square root voting system, optimal threshold and π, [in:] Power, Voting, and Voting Power. 30 Years After, M.J. Holler, H. Nurmi (Eds.), Springer, Berlin 2013, 573-592.
Cytowane przez
Pokaż
ISSN
2081-8858
Język
eng
URI / DOI
http://dx.doi.org/10.5277/ord170204
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu