BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Trojanowski Mariusz (University of Warsaw, Poland), Kułak Jacek (The Walt Disney Company, USA)
Tytuł
The Impact of Moderators and Trust on Consumer's Intention to Use a Mobile Phone for Purchases
Źródło
Journal of Management and Business Administration. Central Europe, 2017, vol. 25, nr 2, s. 91-116, rys., tab., bibliogr. 75 poz.
Słowa kluczowe
Zachowania konsumenta, Technologie mobilne, Handel mobilny, Zaufanie
Consumer behaviour, Mobile technologies, m-commerce, Trust
Uwagi
Klasyfikacja JEL: D11, D12, O14
summ.
Abstrakt
Purpose: This paper examines the consumers' acceptance and usage of technology, which is an important and widely discussed topic. The aim is to explore the impact of moderators (gender, age, experience in using mobile Internet technologies) and trust towards one's intention to use a mobile phone for purchases (to acquire goods).

Methodology: Empirical research was conducted among Warsaw students with the use of the UTAUT2 model (Unifed Theory of Acceptance and Use of Technology), extended so as to encompass the concept of trust. Data was analysed using partial least squares path modelling (PLS-SEM) and the SmartPLS 3 programme. The multi-group analysis was employed (PLS-MGA) to measure the impact of moderating variables.

Findings: Research results indicate that trust has no signifcant impact on one's intention to use a mobile phone for purchases. Gender is an important moderator of the relationship between the independent variable of price value and the independent variable of habit with the dependent variable of the intention to use a mobile phone for purchases. Age is an important moderator in the relationship between the independent variable of hedonic motivation and the independent variable of habit with the dependent variable of the intention to use a mobile phone for purchases. Experience is not an important moderator of any relationship specifed in the hypotheses. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Boundless Psychology (2016). Criticisms of the Social-Cognitive Perspectives on Personality, https:// www.boundless.com/psychology/textbooks/boundless-psychology-textbook/personality-16/ social-cognitive-perspectives-on-personality-81/criticisms-of-the-social-cognitive-pespective-on-personality-316-12851/ (21.02.2017).
  2. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50: 179-211, https://doi.org/10.1016/0749-5978(91)90020-T
  3. Alazzam, M.B. et al. (2016). Trust in stored data in EHRs acceptance of medical staff: using UTAUT2. International Journal of Applied Engineering Research, 11(4): 2737-2748.
  4. Albugami, M. and Bellaaj, M. (2014). The continued use of internet banking - combining UTAUT2 theory and service quality model. Journal of Global Management Research, 10(1): 11-28.
  5. An, L., Han, Y. and Tong, L. (2016). Study on the Factors of Online Shopping Intention for Fresh Agricultural Products Based on UTAUT2. Chongqing, Atlantis Press, https://doi.org/10.2991/itoec-16.2016.57
  6. Bagozzi, R.P. (1992). The self regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55: 178-204, https://doi.org/10.2307/2786945
  7. Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74-94, https://doi.org/10.1007/BF02723327
  8. Bandura, A. (1986). Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs: Prentice-Hall Inc.
  9. Baptista, G. and Oliveira, T. (2015). Understanding mobile banking: The unifed theory of acceptance and use of technology combined with cultural moderators. Computers in Human Behavior, 50: 418-430, https://doi.org/10.1016/j.chb.2015.04.024
  10. Batorski, D. (2015). Korzystanie z mediów 2015. Diagnoza społeczna 2015. Warunki i jakość życia Polaków, konferencja prasowa PAP, Warszawa.
  11. Chae, M. and Kim, J. (2003). What's so different about the mobile Internet? Communications of the ACM, 46(12): 240-247, https://doi.org/10.1145/953460.953506
  12. Chau, P.Y.K. and Hui, K.L. (1998). Identifying Early Adopters of New IT Products: A Case of Windows 95. Information & Management, 33(5): 225-230, https://doi.org/10.1016/S0378-7206(98)00031-7
  13. Chin, W., Marcolin, B. and Newsted, P. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14: 189-217. https://doi.org/10.1287/isre.14.2.189.16018
  14. Chuttur, M. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Sprouts: Working Papers on Information Systems, 9(37): 1-22.
  15. Compeau, D.R. and Higgins, C.A. (1995). Computer self-effcacy: development of a measure and initial test. MIS Quarterly, 19(2): 189-211, https://doi.org/10.2307/249688
  16. Cruz, P., Neto, L., Munoz-Gallego, P. and Laukkanen, T. (2010). Mobile banking rollout in emerging markets: evidence from Brazil. International Journal of Bank Marketing, 28(5): 342-371, https://doi.org/10.1108/02652321011064881
  17. Czapiński, J. and Panek, T. (2015). Diagnoza społeczna 2015. Warunki i jakość życia Polaków. Warszawa: Rada Monitoring Społecznego.
  18. Davis, F. (1986). A technology acceptance model for empirically testing new end-user information systems: theory and results. Cambridge: Unpublished Doctoral dissertation, MIT Sloan School of Management.
  19. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14): 1111-1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
  20. Escobar-Rodríguez, T. and Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unifed theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43: 70-88, https://doi.org/10.1016/j.tourman.2014.01.017
  21. Falk, F.R. and Miller, N.B. (1992). A Primer for Soft Modeling. 1st ed. Akron: The University of Akron.
  22. Fishbein, M. (2008). A Reasoned Action Approach to Health Promotion. Medical Decision Making, 28(6): 834-844, https://doi.org/10.1177/0272989X08326092
  23. Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading: Addison-Wesley.
  24. Fornell, C. and Larcker, D.F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1): 39-50, https://doi.org/10.2307/3151312
  25. Gaitan-Arenas, J., Peral-Peral, B. and Ramon-Jeronimo, M.A. (2015). Elderly and Internet Banking: An Application of UTAUT2. Journal of Internet Banking and Commerce, 20(1): 1-23.
  26. Garson, G. (2016). Partial Least Square: Regression and Structural Equation Models. 1st ed. Asheboro: Statistical Publishing Associates.
  27. Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and TAM in online shopping. MIS Quarterly, 27(1): 51-90.
  28. Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 27: 725-737, https://doi.org/10.1016/S0305-0483(00)00021-9
  29. Hair, J.F., Hult, G.T.M., and Sarstedt, M. (2014). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 1st ed. Thousand Oaks: Sage.
  30. Hair, J.F.J., Sarstedt, M.H.L. and Kuppelwieser, V.G. (2014). Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. European Business Review, 26(2): 106-121, https://doi.org/10.1108/EBR-10-2013-0128
  31. Hair, J.F., Ringle, C.M. and Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2): 139-151, https://doi.org/10.2753/MTP1069-6679190202
  32. Hair, J.F., Sarstedt, M., Ringle, C.M. and Mena, J.A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40: 414-433, https://doi.org/10.1007/s11747-011-0261-6
  33. Hart, P. and Saunders, C. (1997). Power and Trust: Critical Factors in the Adoption and Use of Electronic Data Interchange. Organization Science, 8(1): 23-42, https://doi.org/10.1287/orsc.8.1.23
  34. Henseler, J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3): 405-431, https://doi.org/10.1108/IMR-09-2014-0304
  35. Henseler, J., Ringle, C. and Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20: 277-319, https://doi.org/10.1108/S1474-7979(2009)0000020014
  36. Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2): 195-204. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
  37. Hu, P.J., Chau, P.Y., Liu Sheng, O.R. and Tam, K.Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2): 91-112, https://doi.org/10.1080/07421222.1999.11518247
  38. Indrawati and Haryoto, K.S. (2015). The Use of Modifed Theory of Acceptance and Use of Technology 2 to Predict Prospective Users' Intention in Adopting TV Streaming. Istambuł, ICOCI: 206-215.
  39. Indrawati and Marhaeni, G.A.M.M. (2015). Predicting instant messenger application adoption using a Unifed Theory of Acceptance and Use of Technology. Istambuł, International Conference on Computing and Informatics, ICOCI 2015.
  40. Jarvenpaa, S.L., Tractinsky, N. and Saarinen, L. (1999). Consumer Trust in an Internet Store: A Cross-Cultural Validation. Journal of Computer-Mediated Communication, 5(2): 1-35, https://doi.org/10.1111/j.1083-6101.1999.tb00337.x
  41. Klimontowicz, M. (2014). Rynek płatności mobilnych w Polsce - perspektywy rozwoju. Annales Universitatis Mariae Curie-Skłodowska, 48(3): 137-146, https://doi.org/10.17951/h.2015.48.3.137
  42. Kossecki, P. and Świerczyńska-Kaczor, U. (2011). Trust in social networks. Journal of Management and Business Administration. Central Europe, 19(5): 97-113.
  43. Kruger, D. and Byker, D. (2009). Evolved foraging psychology underlies sex differences in shopping experiences and behaviors. Journal of Social, Evolutionary and Cultural Psychology, 3(4): 315-327, https://doi.org/10.1037/h0099312
  44. Labouvie-Vief, G. and Blanchard-Fields, F. (1982). Cognitive ageing and psychological growth. Aging and Society, 2: 183-209.
  45. Lustig, C., Konkel, A. and Jacoby, L.L. (2004). Which Route to Recovery? Psychological Science, 15(11): 729-735, https://doi.org/10.1111/j.0956-7976.2004.00749.x
  46. Mącik, R. (2013). Technologie informacyjne i komunikacyjne jako moderator procesów podejmowania decyzji zakupowych przez konsumentów. Lublin: Wydawnictwo Uniwersytetu Marii Curie- -Skłodowskiej.
  47. McKnight, D.H., Choudhury, V. and Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. Journal of Strategic Information Systems, 11: 297-323, https://doi.org/10.1016/S0963-8687(02)00020-3
  48. McKnight, H.D., Choudhury, V. and Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13(3): 334-359, https://doi.org/10.1287/isre.13.3.334.81
  49. Meyers-Levy, J. and Maheswaran, D. (1991). Exploring Differences in Males' and Females' Processing Strategy. Journal of Consumer Research, 18(1): 63-70, https://doi.org/10.1086/209241
  50. mGenerator.pl (2014). Handel mobilny w praktyce 2014. 2 edycja raportu na temat rynku m-commerce w Polsce, UE i USA.
  51. Mikowska, M. (2015). Polska jest Mobi, s.l.: Jestem mobi, http://www.tnsglobal.pl/coslychac/fles/2015/05/POLSKA_JEST_MOBI_2015.pdf
  52. Moore, G.C. and Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3): 192-222, https://doi.org/10.1287/isre.2.3.192
  53. Murray, K.B. and Haubl, G. (2007). Explaining Cognitive Lock-In: The Role of Skill-Based Habits of Use in Consumer Choice. Journal of Consumer Research, 34(1): 77-88, https://doi.org/10.1086/513048
  54. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3): 101-134.
  55. Ringle, C., Wende, S. and Becker, J.-M. (2015). SmartPLS 3. Hamburg: http://www.smartpls.com.
  56. Rogers, E.M. (1983). Diffusion of Innovations. 3rd ed. New York: The Free Press.
  57. Rondan-Cataluna, J.F., Arenas-Gaitan, J. and Ramirez-Correa, P.E. (2015). A comparison of different versions of technology acceptance models. A non-linear perspective. Kybernetes, 44(5): 788-805, https://doi.org/10.1108/K-09-2014-0184
  58. Rosen, P. (2005). The Effect of Personal Innovativeness on Technology Acceptance and Use. PhD Dissertation. Oklahoma City: Oklahoma State University.
  59. Seock, Y.-K. and Bailey, L.R. (2008). The influence of college students' shopping orientations and gender differences on online information searches and purchase behaviours. International Journal of Consumer Studies, 32: 113-121, https://doi.org/10.1111/j.1470-6431.2007.00647.x
  60. Slade, E.L., Dwivedi, Y.K., Piercy, N.C. and Williams, M.D. (2015). Modeling Consumers' Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk,and Trust. Psychology & Marketing, 32(8): 860-873, https://doi.org/10.1002/mar.20823
  61. Slama, M. and Tashchian, A. (1985). Selected Socioeconomic and Demographic Characteristics Associated with Purchasing Involvement. Journal of Marketing, 49(1): 77-82, https://doi.org/10.2307/1251177
  62. Taylor, S. and Todd, P. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4): 561-570, https://doi.org/10.2307/249633
  63. Thompson, R., Higgins, C. and Howell, J. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1): 124-143, https://doi.org/10.2307/249443
  64. Tifferet, S. and Herstein, R. (2012). Gender differences in brand commitment, impulse buying, and hedonic consumption. Journal of Product & Brand Management, 21(3): 176-182, https://doi.org/10.1108/10610421211228793
  65. Triandis, H. (1980). Values, Attitudes, and Interpersonal Behavior. In: Nebraska Symposium on Motivation (1979), Beliefs, Attitudes, and Values. Lincoln: University of Nebraska Press.
  66. Trojanowski, M. and Kułak, J. (2016). Wpływ postrzeganego ryzyka na proces korzystania przez konsumentów z mobilnego handlu elektronicznego - rozszerzenie modelu UTAUT2. Warszawa: Uniwersytet Ekonomiczny w Poznaniu.
  67. Van Slyke, C., Comunale, C.L. and Belanger, F. (2002). Gender Differences in Perceptions of WebBased Shopping. Communications of the ACM, 45(7): 82-86, https://doi.org/10.1145/545151.545155
  68. Venkatesh, V. and Davis, F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2): 186-204, https://doi.org/10.1287/mnsc.46.2.186.11926
  69. Venkatesh, V., Morris, M. and Ackerman, P. (2000). A longitudinal feld investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1): 33-60, https://doi.org/10.1006/obhd.2000.2896
  70. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unifed View. MIS Quarterly, 27(3): 425-247.
  71. Venkatesh, V., Thong, J.Y. and Xu, X. (2012). Consumer acceptance and use of information technology: Extending The Unifed Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1): 157-178.
  72. Wong, C.-H., Tan, G. W.-H., Loke, S.-P. and Ooi, K.-B. (2014). Mobile TV: a new form of entertainment? Industrial Management & Data Systems, 114(7): 1050-1067, https://doi.org/10.1108/IMDS-05-2014-0146
  73. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24: 1-32.
  74. Xu, X. (2014). Understanding Users' Continued Use of Online Games: An Application of UTAUT2 in Social Network Games. Nicea, MMEDIA: 58-65.
  75. Zeithaml, V.A. and Fuerst, W.L. (1983). Age Differences in Response to Grocery Store Price Information. The Journal of Consumer Affairs, 17(2): 402-420, https://doi.org/10.1111/j.1745-6606.1983.tb00311.x
Cytowane przez
Pokaż
ISSN
2450-7814
Język
eng
URI / DOI
http://dx.doi.org/10.7206/jmba.ce.2450-7814.197
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu