BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Friederich Jan (Friedrich-Alexander University Erlangen, Germany), Leugering Günter (Friedrich-Alexander University Erlangen, Germany), Steinmann Paul (Friedrich-Alexander University Erlangen, Germany)
Tytuł
Adaptive Finite Elements Based on Sensitivities Fortopological Mesh Changes
Źródło
Control and Cybernetics, 2014, vol. 43, nr 2, s. 279-306, rys., bibliogr. s. 305-306
Słowa kluczowe
Teoria grafów, Metody numeryczne
Graph theory, Numerical methods
Uwagi
summ.
Abstrakt
We propose a novel approach to adaptive refinement in FEM based on local sensitivities for node insertion. To this end, we consider refinement as a continuous graph operation, for instance by splitting nodes along edges. Thereby, we introduce the concept of the topological mesh derivative for a given objective function. For its calculation, we rely on the first-order asymptotic expansion of the Galerkin solution of a symmetric linear second-order elliptic PDE. In this work, we apply this concept to the total potential energy, which is related to the approximation error in the energy norm. In fact, our approach yields local sensitivities for minimization of the energy error by refinement. Moreover, we prove that our indicator is equivalent to the classical explicit a posteriori error estimator in a certain sense. Numerical results suggest that our method leads to efficient and competitive adaptive refinement. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Aguilar, J. C.; Goodman, J. B. (2006), Anisotropic mesh refinement for finite element methods based on error reduction. Journal of Computational and Applied Mathematics, 193(2), 497-515.
  2. Ainsworth, M.; Oden, J. T. (2000), A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York.
  3. Alt, H. W. (2002), Lineare Funktionalanalysis. Springer, Berlin, 4th edition.
  4. Ambrosio, L., Fusco, N.,; Pallara, D. (2000), Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York.
  5. Babuska, I.; Aziz, A. K. (1976), On the angle condition in the finite element method. SIAM Journal on Numerical Analysis, 13(2), 214-226.
  6. Babuska, I.; Rheinboldt, W. C. (1978), Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis, 15(4), 736-754.
  7. Bangerth, W.; Rannacher, R. (2003), Adaptive Finite Element Methods for Differential Equations. Birkh¨auser, Basel.
  8. Bank, R. E. (1996), Hierarchical bases and the finite element method. Acta Numerica, 5, 1-45.
  9. Bank, R. E.; Smith, R. K. (1993), A posteriori error estimates based on hierarchical bases. SIAM Journal on Numerical Analysis, 30(4), 921-935.
  10. Brenner, S. C.; Scott, L. R. (2002), The Mathematical Theory of Finite Element Methods. Springer, New York, 2nd edition.
  11. Carstensen, C.; Merdon, C. (2010), Estimator competition for poisson problems. Journal of Computational Mathematics, 28(3), 309-330.
  12. Ciarlet, P. G. (2002), The Finite Element Method for Elliptic Problems. SIAM, Philadelphia, 2nd edition.
  13. Delfour, M. C.; Payre, G.,; Zolésio, J.-P. (1985), An optimal triangulation for second-order elliptic problems. Computer Methods in Applied Mechanics and Engineering, 50(3), 231-261.
  14. Deuflhard, P.; Leinen, P.; Yserentant, H. (1989), Concepts of an adaptive hierarchical finite element code. IMPACT of Computing in Science and Engineering, 1(1), 3-35.
  15. Friederich, J.; Leugering, G.; Steinmann, P. (2012), Adaptive refinement based on asymptotic expansions of finite element solutions for node insertion in 1d. GAMM-Mitteilungen, 35(2), 175-190.
  16. Funken, S. A.; Praetorius, D.; Wissgott, P. (2011), Efficient implementation of adaptive p1-fem in matlab. Computational Methods in Applied Mathematics, 11(4), 460-490.
  17. Krysl, P.; Grinspun, E.; Schröder, P. (2003) Natural hierarchical refinement for finite element methods. International Journal for Numerical Methods in Engineering, 56(8), 1109-1124.
  18. Leugering, G.; Sokolowski, J. (2008), Topological sensitivity analysis for elliptic problems on graphs. Control and Cybernetics, 37(4), 971-997.
  19. Leugering, G.; Sokolowski, J. (2011), Topological derivatives for networks of elastic strings. Zeitschrift f¨ur Angewandte Mathematik und Mechanik, 91(12), 926-943.
  20. Luce, R.; Wohlmuth, B. (2004), A local a posteriori error estimator based on equilibrated fluxes. SIAM Journal on Numerical Analysis, 42(4), 1394-1414.
  21. Mitchell, W. F. (1989), A comparison of adaptive refinement techniques for elliptic problems. ACM Transactions on Mathematical Software, 15(4), 210-227.
  22. Morin, P.; Nochetto, R. H.; Siebert, K. G. (2000), Data oscillation and convergence of adaptive fem. SIAM Journal on Numerical Analysis, 38(2), 466-488.
  23. Morin, P.; Nochetto, R. H.; Siebert, K. G. (2003), Local problems on stars: a posteriori error estimators, convergence, and performance. Mathematics of Computation, 72(243), 1067-1097.
  24. Morin, P.; Siebert, K. G.; Veeser, A. (2008), A basic convergence result for conforming adaptive finite elements. Mathematical Methods in the Applied Sciences, 18(5), 707-737.
  25. Novotny, A. A.; Feijóo, R. A., Taroco, E.; Padra, C. (2003), Topological sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 192(7-8), 803-829.
  26. Reddy, B. D. (1998), Introductory Functional Analysis with Applications to Boundary Value Problems and Finite Elements. Springer, New York.
  27. Sokolowski, J.; Zochowski, A. (1999), On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 37(4), 1251-1272.
  28. Sokolowski, J.; Zolésio, J.-P. (1992), Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin.
  29. Stein, E. (2003), Error-controlled Adaptive Finite Elements in Solid Mechanics. Wiley, Chichester.
  30. Verfurth, R. (1996), A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley-Teubner, Chichester.
  31. Zienkiewicz, O. C.; Craig, A. (1986), Adaptive refinement, error estimates, multigrid solution, and hierarchic finite element method concepts. In: I. Babuˇska, O. C. Zienkiewicz, J. Gago, and E. Oliviera, eds., Accuracy Estimates and Adaptive Refinements in Finite Element Computations, John Wiley & Sons, New York, 25-59.
  32. Zienkiewicz, O. C.; Gago, J.; Kelly, D. W. (1983), The hierarchical concept in finite element analysis. Computers and Structures, 16(1-4), 53-65.
Cytowane przez
Pokaż
ISSN
0324-8569
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu