BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Wołoszkiewicz Piotr (Uniwersytet Marii Curie-Skłodowskiej in Lublin, Poland), Murawski Krzysztof (University of Texas at Arlington), Musielak Zdzisław E. (Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germanyat Arlington), Mignone Andrea (Università di Torino, Italy)
Tytuł
Numerical Simulations of Alfvén Waves in the Solar Atmosphere with the PLUTO Code
Źródło
Control and Cybernetics, 2014, vol. 43, nr 2, s. 321-335, rys., bibliogr. s. 334-335
Słowa kluczowe
Symulacja, Metody numeryczne
Simulation, Numerical methods
Uwagi
summ.
Abstrakt
With an adaptation of the PLUTO code, we present a 2.5-dimensional Cartesian magnetohydrodynamic model with the invariant (∂/∂z = 0) coordinate z of propagating magnetohydrodynamic- gravity waves in the solar atmosphere, permeated by curved magnetic field and constant gravity field g = -gˆy. This code implements second-order accurate Godunov-type numerical scheme and MPI for high level of parallelization. We show that the inhomogeneous grid, originally built in the code, resolves well the system dynamics, resulting from the localized pulse initially launched in the transverse component of velocity Vz. We consider two cases for background magnetic field Be = [Bex,Bey,Bez] with its transverse component: (a) Bez = 0 and (b) Bez 6= 0. In case (a), the initial pulse triggers only Alfv´en waves, described solely by Vz. These waves drive by ponderomotive forces the magnetoacoustic waves, associated with perturbations in Vx and Vy. As a result of Bez 6= 0, in the (b) case, Alfv´en waves are coupled to their magnetoacoustic counterparts and all three velocity components are perturbed. We show that in this case the PLUTO code is accurate, its order being 1.97 and the numerically induced flow is of magnitude ≈ 0.1 km s-1, i.e. by a factor of at least ≈ 103 lower than the characteristic (Alfv´en) speed of the system. The errors, associated with the selenoidal condition, are low with the max |∇ ・ B| ≈ 1.3 ・ 10-10 Tesla km-1. We conclude that the PLUTO code copes well with resolving all spatial and temporal scales that appear in this numerically challenging system. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Avrett, E. H., Loeser, R. (2008) Models of the Solar Chromosphere and Transition Region from SUMER and HRTS Observations: Formation of the Extreme-Ultraviolet Spectrum of Hydrogen, Carbon, and Oxygen. Astrophysical Journal, Supplement 175, 229-276.
  2. Banerjee, D., Erdélyi, R., Oliver, R., O'Shea, E. (2007) Present and Future Observing Trends in Atmospheric Magnetoseismology. Sol. Phys. 246, 3-29.
  3. Chmielewski, P., Murawski, K., Musielak, Z. E., Srivastava, A. K. (2014) Numerical simulation of impulsively generated Alfvén waves in solar magnetic arcades. Astrophysical Journal, Supplement, submitted.
  4. Chmielewski, P., Srivastava, A. K., Murawski, K., Musielak, Z. E. (2013) Pulse-driven non linear Alfvén waves and their role in the spectral line broadening. Monthly Notices of the Royal Astronomical Society 428, 40-49.
  5. De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Schrijver, C. J., Title, A. M., Shine, R. A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., Nagata, S. (2007) Chromospheric Alfv´enic Waves Strong Enough to Power the Solar Wind. Science 318, 1574.
  6. Fedun, V., Verth, G., Jess, D. B., Erdélyi, R. (2011) Frequency Filtering of Torsional Alfvén Waves by Chromospheric Magnetic Field. Astrophysical Journal, Letters 740, L46.
  7. Gruszecki, M., Murawski, K., Solanki, S. K., Ofman, L. (2007), Attenuation of Alfvén waves in straight and curved coronal slabs. Astronomy and Astrophysics 469, 1117-1121.
  8. Konkol, P., Murawski, K., Zaqarashvili, T. V. (2012) Numerical simulations of magnetoacoustic oscillations in a gravitationally stratified solar corona. Astronomy and Astrophysics 537, A96.
  9. Kudoh, T., Shibata, K. (1999) Alfvén Wave Model of Spicules and Coronal Heating. Astrophysical Journal 514, 493-505. .
  10. Matsumoto, T., Shibata, K. (2010) Nonlinear Propagation of Alfvén Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation. Astrophysical Journal 710, 1857-1867.
  11. Matsumoto, T., Suzuki, T. K. (2012) Connecting the Sun and the Solar Wind: The First 2.5 dimensional Self-consistent MHD Simulation under the Alfvén Wave Scenario. Astrophysical Journal 749, 8.
  12. Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., Ferrari, A. (2007) PLUTO: a Numerical Code for Computational Astrophysics. Astrophysical Journal, Suplement Series 170, 1, 228- 234.
  13. Mignone, A., Zanni, C., Tzeferacos, P., van Straalen, B., Colella, P., Bodo, G. (2012) The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid Dynamics. Astrophysical Journal, Supplement 198, 7.
  14. Murawski, K. (1992) Alfven-magnetosonic waves interaction in the solar corona. Sol. Phys. 139, 279-297.
  15. Murawski, K. (2002) Analytical and numerical methods for wave propagation in fluid media. World Scientific 175, 645.
  16. Murawski, K., Musielak, Z. E. (2010) Linear Alfvén waves in the solar atmosphere. Astronomy and Astrophysics 518, A37.
  17. Nakariakov, V. M., Roberts, B., Murawski, K. (1997) Alfven Wave Phase Mixing as a Source of Fast Magnetosonic Waves. Sol. Phys. 175, 93- 105.
  18. Nakariakov, V. M., Roberts, B., Murawski, K. (1998) Nonlinear coupling of MHD waves in inhomogeneous steady flows. Astronomy and Astrophysics 332, 795-804.
  19. Ofman, L. (2010) Wave Modeling of the Solar Wind. Living Reviews in Solar Physics 7, 4.
  20. Suzuki, T. K. (2007) Self-Consistent MHD Modeling of Solar Wind. New Solar Physics with Solar-B Mission 369 of Astronomical Society of the Pacific Conference Series, 557.
  21. Suzuki, T. K., Inutsuka, S.-I. (2006) Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. Journal of Geophysical Research (Space Physics) 111, 6101.
  22. Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H., Edmondson, J. (2007) Alfvén Waves in the Solar Corona. Science 317, 1192.
  23. Vigeesh, G., Fedun, V., Hasan, S. S., Erdélyi, R. (2012) Threedimensional Simulations of Magnetohydrodynamic Waves in Magnetized Solar Atmosphere. Astrophysical Journal 755, 18.
Cytowane przez
Pokaż
ISSN
0324-8569
Język
eng
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu