- Autor
- Baryła Anna (Warsaw University of Life Sciences - SGGW), Karczmarczyk Agnieszka (Warsaw University of Life Sciences - SGGW), Wróbel Michał (Forest Research Institute in Sękocin Stary), Kożuchowski Paweł (Green Roofs Laboratory)
- Tytuł
- Water Retention on the Extensive Green Roof Models
- Źródło
- Infrastruktura i Ekologia Terenów Wiejskich, 2017, nr IV/2, s. 1649-1658, rys., tab., bibliogr. 21 poz.
Infrastructure and Ecology of Rural Areas - Słowa kluczowe
- Wody gruntowe, Miasto, Ochrona terenów zielonych, Retencja wód, Wyniki badań
Groundwater, City, Protection of green areas, Water retention, Research results - Uwagi
- summ.
- Abstrakt
- One of the main problems of urbanization is the continuous growth of sealed surfaces. Impermeable surfaces i.e. roofs, roads or pavements have dominated land cover, increasing surface runoff and limiting groundwater runoff, often contributing to increased flood risk. The practice of many countries has shown that green roofs are one of the solutions to the problem of rainwaters on the urban areas. The aim of the study was to assess the retention ability of three green roofs of extensive type with different substrate composition (two mineral-organic mixtures, one mineral mixture). The research was carried out at the Water Centre of the Warsaw University of Life Sciences in Warsaw (Ursynów district) in the period from June to November in 2016. The obtained results were compared with observation of the reference model - bituminous roof. Model studies have shown that green roofs retained water in the range from 9.5 mm to 67.1 mm. The average runoff coefficients for green roof types in the period from June to November in 2016 were from 0.31 to 0.33. The obtained results showed slight differences in outflows with different substrates. During high rainfall, the differences in the runoff between the green roofs and the reference roof were negligible.
- Pełny tekst
- Pokaż
- Bibliografia
- Baryła A., Karczmarczyk A., Bus A. (2014). Analiza stosunków wodnych substratów wykorzystywanych w systemach zielonego dachu. Inżynieria Ekologiczna (39):9-14.
- Burszta-Adamiak E. (2014). Zielone dachy jako element zrównoważonych systemów odwadniających na terenach zurbanizowanych. Wyd. UP we Wrocławiu, M CLXXV: 124.
- Carpenter D., D. Kaluvakolanu P. (2011). Effect of roof surface type on storm-water runoff from full-scale roofs in a temperate climate. Journal of Irrigation and Drainage Engineering. 137 (3): 161-169.
- Carter T. L., Rasmussen T.C. (2006). Hydrologic behavior of vegetated roofs. Journal of the American Water Resources Association, 42 (5):1261-1274.
- DAFA (2015). Dachy Zielone. Wytyczne do projektowania, wykonywania i pielęgnacji dachów zielonych -wytyczne dla dachów zielonych. Stowarzyszenie Wykonawców Dachów Płaskich i fasad (DAFA) Opole, Poland DZ.1.01.
- Fassman-Beck E., Voyde E., Simcock R., Sing Hong Y. (2013). 4 Livingroofs in 3 locations: Does configuration effect runoff mitigation? Journal of Hydrology, 490: 11-20.
- FEMP (Federal Energy Management Program) (2006). Green roofs. Federal Technology Alert.
- Getter, K.L., Rowe, D.B. The role of extensive green roofs in sustainable development. HortScience, 41 (5): 1276-1285.
- Hilten R.N., Lawrence T.M., Tollner E.W. (2008). Modeling stormwater runoff from green roofs with HYDRUS-1D. Journal of Hydrology, 358:288-293.
- Kaczorowska Z. (1962). Opady w Polsce w przekroju wieloletnim. Prace Geogr. IG PAN 33.
- Kohler M., Schmidt M. (1999). Langzeituntersuchungen an begrunten Dachern in Berlin. Dach+Grun 8 (1): 12-17.
- Kożuchowski P. (2016). Aneks do porozumienia o współpracy 1/KKS/2015 z dnia 02.03.2015. SGGW w Warszawie.
- Liesecke H. J. (1999). Extensive begrunung bei 50 dachneigung. Stadt und Grun 48(5): 337-346.
- Lee J.Y., Moon H. J., Kim T.I., Kim H. W., Han M. Y. (2013). Quantitative analysis on the urban flood mitigation effect by the extensive green roof system. Environmental Pollution, 181: 257-261.
- Majewski G., Przewoźniczuk W., Kleniewska M. (2010). Warunki opadowe na stacji meteorologicznej Ursynów SGGW w latach 1960-2009. Przegląd Naukowy - Inżynieria i Kształtowanie Środowiska 2 (48): 3-22.
- Mentens J, Raes D, Hermy M. (2005). Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landscape and Urban Planning, 77: 21-226.
- Ni J. (2006). Green roof study: stormwater quantity, quality and thermal performance. Master of Science. Master Thesis, University of Pittsburgh, 252.
- Pęczkowski G., Orzepowski W., Pokładek R., Kowalczyk T., Żmuda R. (2016). Właściwości retencyjne zielonych dachów typu ekstensywnego na przykładzie badań modelowych. Acta Sci. Pol., Formatio Circumiectus, 15(3): 113-120.
- Roehr D., Kong Y. (2010). Runoff Reduction Effects of Green Roofs in Vancouver, BC, Kelowna, BC, and Shanghai P.R. China. Canadian Water Res. J., 35(1): 53-68.
- Simmons M. T., Gardiner B., Windhager S., Tinsley J. (2008).Green roofs are not created equal: the hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban Ecosyst.11: 339-348.
- Uhl M., Schiedt L. (2008). Green Roof storm Water retention -Monitoring Results. 11th Intern Conf. on Urban drainage, Edinburgh.
- Cytowane przez
- ISSN
- 1732-5587
- Język
- eng
- URI / DOI
- http://dx.medra.org/10.14597/infraeco.2017.4.2.124