BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Tichoniuk Mariusz (Poznań University of Economics and Business)
Tytuł
Electrochemical Sensors for Fast Detection of Foodborne Pathogens
Elektrochemiczne sensory do szybkiej detekcji patogenów obecnych w produktach spożywczych
Źródło
Towaroznawcze Problemy Jakości, 2017, nr 4, s. 42-53, rys., tab., bibliogr. 40 poz.
Polish Journal of Commodity Science
Słowa kluczowe
Żywność, Bezpieczeństwo mikrobiologiczne, Badanie żywności, Choroby
Food, Microbiological safety, Food research, Illness
Uwagi
summ., streszcz.
Abstrakt
Zagrożenia wynikające z zanieczyszczenia mikrobiologicznego żywności przyczyniają się do poszukiwania szybkich i wiarygodnych alternatywnych metod wykrywania obecności w niej chorobotwórczych mikroorganizmów. Konwencjonalne sposoby detekcji skażenia mikrobiologicznego są wiarygodne, ale najczęściej ich wykorzystanie wymaga dużo czasu i jest kłopotliwe w przypadku szybkiej, rutynowej kontroli żywności. Wśród rozwijanych alternatywnych metod znaczące miejsce zajmują sensory elektrochemiczne zdolne do oceny zmian właściwości elektrycznych środowiska, w którym rozwijają się badane drobnoustroje (sensory impedymetryczne, konduktometryczne, potencjometryczne), sensory amperometryczne wykrywające obecność mikroorganizmów lub produkty ich metabolizmu oraz biosensory hybrydyzacji kwasów nukleinowych rozpoznające sekwencje specyficzne dla patogenów. W ramach prac nad tymi ostatnimi przygotowany został biosensor umożliwiający detekcję fragmentów DNA charakterystycznych dla genu kodującego aerolizynę, toksynę wytwarzaną przez bakterie Aeromonas hydrophila, na poziomie 2,5 μg/ml. Miniaturyzacja i automatyzacja sensorowych układów elektrochemicznych pozwoli w przyszłości na ich powszechne stosowanie w szybkiej detekcji mikroflory patogennej w żywności. (abstrakt oryginalny)

The hazard of microbiological contamination of food forces the development of fast and reliable alternative methods of microbial pathogens detection. Although traditional cultured-based methods are considered as the most reliable ones, they remain time-consuming and troublesome in fast and routine food control. Amongst the promising alternative analytical tools a significant role play electrochemical sensors capable of monitoring changes in electrical properties of the medium, which contains analyzed microbes (impedimetric, conductometric and potentiometric sensors), amperometric arrays usually used for the identification of microorganisms or its metabolites, and nucleic acid hybridization biosensors detecting nucleic acid fragments typical for foodborne pathogenic microorganisms. The work on DNA hybridization biosensors led to construction of the sensor capable to recognize DNA fragments typical for gene coding an aerolysin, a toxin secreted by Aeromonas hydrophila bacteria, at the concentration of 2.5 μl/ml. Miniaturization and automation of electrochemical sensor enable in the future its wider application in fast foodborne pathogen detection. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Główna Uniwersytetu Ekonomicznego w Poznaniu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Sharma H., Mutharasan R. (2013) Review of biosensors for foodborne pathogens and toxins. Sensors and Actuators B: Chemical, 183, 535-549.
  2. Rohde A., Hammerl J.A., Boone I., Jansen W., Fohler S., Klein G., Dieckman R., Al Dahouk S. (2017) Overview of validated alternative methods for the detection of foodborne bacterial pathogens. Trends in Food Science & Technology, 62, 113-118.
  3. Newell D.G., Koopmas M., Verhoef L., Duizer E., Aidara-Kane A., Sprong H., Opsteegh M., Langelaar M., Threfall J., Scheutz F., van der Giessen J., Kruse H. (2010) Food-borne disease - The challenge of 20 years ago still persist when new ones continue to emerge. International Journal of Food Microbiology, 139 (Suppl.), S3-S15.
  4. Dwivedi H.P., Jaykus L.-A. (2011) Detection of pathogens in foods the current state-of-the-art and future directions. Critical Reviews in Microbiology, 37 (1), 40-63.
  5. Verma M.S., Rogowski J.L., Jones L., Gu F.X. (2015) Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnology Advances, 33, 666-680.
  6. Hoorfar J. (2011) Rapid detection, characterization and enumeration of foodborne pathogens. Acta Pathologica, Microbiologia et Immunologica Scandinavica, 119 (Suppl. 133), 1-24.
  7. Brandão D., Liébana S., Pividori M.I. (2015) Multiplexed detection of foodborne pathogens based on magnetic particles. New Biotechnology, 32, 511-520.
  8. Togo C., Wutor V.C., Limson J.L., Pletschke B.I. (2007) Novel detection of Escherichia coli β-D-glucuronisidase activity using a microbially-modified glassy carbon electrode and its potential for faecal pollution monitoring. Biotechnology Letters, 29 (4), 531-537.
  9. Velusamy V., Arshak K., Korostynska O., Oliwa K., Adley C. (2010) An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnology Advan-ces, 28 (2), 232-254.
  10. Nayak M., Kotian A., Marathe S., Chakravortty D. (2009) Detection of microorganisms using biosensors. A smarter way towards detection techniques. Biosensors and Bioelec-tronics, 25 (4), 661-667.
  11. Zhang X., Kitaoka H., Tsuji S., Tamai M., Kobayashi H., Honjoh K.-I., Mijamoto T. (2014) Development of a simultaneous detection method for foodborne pathogens using surface plasmon resonance biosensors. Food Science and Technology Research, 20 (2), 317-325.
  12. Palchetti I., Mascini M. (2008) Electrochemical biosensors and their potential for food pathogen and toxin detection. Analytical and Bioanalytical Chemistry, 391 (2), 455-471.
  13. Sadik O.A., Aluoch A.O., Zhou A. (2009) Status of biomolecular recognition using electrochemical techniques. Biosensors and Bioelectronics, 24 (9), 2749-2765.
  14. Wang Y., Ye Z., Ying Y. (2012) New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors, 12 (3), 3449-3471.
  15. Palecek E., Fojta M. (2005) Electrochemical DNA sensors. In Bioelectronics. From theory to applications. Willner I., Katz E. (Eds), Wiley-VCH Verlag GmbH & Co, Weinheim, Germany, pp. 127-192.
  16. Labuda J., Oliveira Brett A.M., Evtugyn G., Fojta M., Mascini M., Ozsoz M., Palchetti I., Palecek E., Wang J. (2010) Electrochemical nucleic acid-based biosensors: Concepts, terms and methodology (IUPAC Technological Report). Pure and Applied Chemistry, 82 (5), 1161-1187.
  17. Tichoniuk M., Gwiazdowska D., Ligaj M., Filipiak M. (2010) Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor. Biosensors and Bioelectronics, 26, 1618-1623.
  18. Ligaj M., Tichoniuk M., Gwiazdowska D., Filipiak M. (2014) Electrochemical DNA sensor for the detection of pathogenic bacteria Aeromonas hydrophila. Electrochimica Acta, 128, 67-74.
  19. Fronczek C.F., Yoon J.-Y. (2016) Detection of foodborne pathogens using biosensors. In: Barros-Valázquez J. Antimicrobial Food Packaging. Elsevier Academic Press, pp. 153-166.
  20. Atlas R.M. (2006) Handbook of microbiological media for examination of food. CRC Press, Taylor & Francis Group, Boca Raton, USA.
  21. Goderska K., Szwengiel A. (2009) Nowe metody stosowane w analizie żywności. La-boratorium, 5, 10-15.
  22. Jasson V., Jacxen L., Luning P., Rajkovic A., Uyttendaele M. (2010) Alternative micro-bial methods: An overview and selection criteria. Food Microbiology, 27 (6), 710-730.
  23. dos Santos Scheid A.D., Rodrigues K.L., Chemello D., Tondo E.C., Ayub M.A.Z., Aleixo J.A.G. (2003) Evaluation of indirect ELISA for the detection of Salmonella in chicken carcass rinses. Journal of Food Protection, 66, 1996-2004.
  24. Churchill R.L.T., Lee H., Hal J.C. (2006) Detection of Listeria monocytogenes and their toxin listeriolysin O in food. Journal of Microbiological Methods, 66 (2), 141-170.
  25. Chen J., Tang J., Liu J; Cai Z., Bai X. (2012) Development and evaluation of a multiple PCR for simultaneous detection of five foodborne pathogens. Journal of Applied Microbiology, 112, 823-830.
  26. He P., Zhu G., Luo J., Wang H., Yan Y., Chen L., Gao W., Chen Z. (2017) Development and application of a one-tube multiplex real-time PCR with melting curve analysis for simultaneous detection of five foodborne pathogens in food samples. Journal of Food Safety, 37, e12297.
  27. Choi A., Park J.S., Jung H.-I. (2009) Solid-medium-integrated impedimetric biosensor for real-time monitoring of microorganisms. Sensors and Actuators B: Chemical, 137 (1), 357-362.
  28. Yang L., Li Y., Griffis C.L., Johnson M.G. (2004) Interdigitated microelectrod (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and Bioelectronics, 19 (10), 1139-1147.
  29. Chen Q., Wang D., Cai G., Xiong Y., Li Y., Wang M., Huo H., Lin J. (2016) Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. Biosensors and Bioelectronics, 86, 770-776.
  30. Ercole C., Del Gallo M., Mosiello L., Baccella S., Lepidi A. (2003) Escherichia coli detection in vegetable food by a potentiometric biosensor. Sensors and Actuators B: Chemical, 91 (1-3), 163-168.
  31. Croci L., Delibato E., Volpe G., Polleschi G. (2001) A rapid electrochemical ELISA for the detection of Salmonella in meat samples. Analytical Letters, 34 (15), 2597-2607.
  32. Che Y., Li Y., Slavik M. (2001) Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosensors and Bioelectronics, 16 (9-12), 791-797.
  33. Noh S., Choe Y., Tamilavan V., Hyun M.H., Kang H.Y., Yang H. (2015) Facile electro-chemical detection of Escherichia coli using redox cycling of the product generated by the intracellular β-D-galactosidase. Sensors and Actuators B: Chemical, 209, 951-956.
  34. Chemburu S., Wilkins E., Abdel-Hamid I. (2005) Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosensors and Bioelectronics, 21 (3), 491-499.
  35. Alhogai S., Suaifan G.A.R.Y., Zourob M. (2016) Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosensors and Bio-electronics, 86, 1061-1066.
  36. Bhardwaj J., Devarakonda S., Kumar S., Jang J. (2017) Development of a paper-based electrochemical immunosensor using an antibody-single walled carbon nanotubes bio-conjugate modified electrode for label-free detection of foodborne pathogens. Sensors and Actuators B: Chemical, 253, 115-123.
  37. Nordin N., Yuzof N.A., Abdullah J., Radu S., Hushiarian R. (2016) Sensitive detection of multiple pathogens using a single DNA probe. Biosensors and Bioelectronics, 86, 398-405.
  38. Xu M., Wang R., Li Y. (2017) Electrochemical biosensors for rapid detection of Esche-richia coli O157:H7". Talanta, 162, 511-522.
  39. Li F., Yu Z., Qu H., Zhang G., Yan H., Liu X., He X. (2015) A highly sensitive and specific electrochemical sensing method for robust detection of Escherichia coli Z gene sequence". Biosensors and Bioelectronics, 68, 78-82.
  40. Rapid-Labs 2016. "Smart Solutions for Water & Environment. DNA Biosensor". https://rapid-labs.net/dna-biosensor/ [access: 30.06.2016].
Cytowane przez
Pokaż
ISSN
1733-747X
Język
eng
URI / DOI
http://dx.doi.org/10.19202/j.cs.2017.04.04
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu