- Autor
- Maciejczak Mariusz (Warsaw University of Life Sciences - SGGW, Poland), Takács István (Óbuda University, Budapest, Hungary), Takács-György Katalin (Óbuda University, Budapest, Hungary)
- Tytuł
- Use of Smart Innovations for Development of Climate Smart Agriculture
Wykorzystanie inteligentnych innowacji w rozwoju koncepcji Climate Smart Agriculture - Źródło
- Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 2018, T. 20, z. 2, s. 117-124, rys., bibliogr. 32 poz.
- Słowa kluczowe
- Rozwój zrównoważony, Innowacje, Technologia
Sustainable development, Innovations, Technology - Uwagi
- Klasyfikacja JEL: O31, Q19, Q55
streszcz., summ. - Abstrakt
- Koncepcja Climate Smart Agriculture (CSA) łączy wyzwania związane ze zmianami klimatu i bezpieczeństwem żywnościowym, postulując integrację działań ograniczających i zapobiegających powstającym ryzykom, głównie za sprawą inteligentnych innowacji. Artykuł przedstawia, w jaki sposób CSA może wykorzystać inteligentne innowacje w rolnictwie. W szczególności jak innowacje te mogą przyczynić się do zmniejszenia podatności na zagrożenia systemu rolnego, a tym samym zwiększenia jego odporność na zmiany klimatu. Wyniki badań foresight pokazały, że wykorzystanie innowacyjnych technologii może przynieść korzyści poprzez zmniejszenie asymetrii informacji pochodzących z naturalnych systemów produkcyjnych oraz poprzez ograniczenie szoków i stresów wynikających ze zmian klimatu, a także zmniejszenie presji środowiskowej i związanych z nią ryzyk produkcyjnych i negatywnych skutków zewnętrznych.(abstrakt oryginalny)
The concept of Climate Smart Agriculture couples climate change and food security through the integration of adaptation and mitigation measures, mostly driven by smart-innovations. The paper is an attempt to present how climate smart agriculture concept could be driven by diffusion of the smart innovations in agriculture, and how these innovations could contribute to reduce vulnerability and hence increase resilience to climate change. The results of foresight studies shows that use of innovative technologies could provide benefits through reducing the asymmetry of information coming from natural production systems and through reducing its vulnerability, as well as reducing the environmental pressure and connected with this risk of increased production failures and negative external effects.(original abstract) - Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka - Pełny tekst
- Pokaż
- Bibliografia
- Bañuls Víctor A., Murray Turoff. 2011. Scenario construction via Delphi and cross-impact analysis. Technological Forecasting & Social Change 78: 1579-1602, doi:10.1016/j.techfore.2011.03.014.
- Behnassi Mohamed, Sabbir A. Shahid, Joyce D'Silva. 2011. Sustainable Agricultural Development. Recent approaches in resources management and environmentally-balanced production enhancement. Springer, https://www.springer.com/gp/book/9789400705180.
- Brandt Patric, Marko Kvakić, Klaus Butterbach-Bahl, Mariana C. Rufino. 2017. How to target climate- -smart agriculture? Concept and application of the consensus-driven decision support framework "target CSA". Agricultural Systems 151: 234-245, doi: 10.1016/j.agsy.2015.12.011.
- Caffey Rex H., Richard F. Kazmierczak, James W. Avault. 2001. Incorporating Multiple Stakeholder Goals into the Development and use of Sustainable Index: Consensus Indicators of Aquaculture Sustainability. Eunice, LA, USA: Department of AgEcon and Agribusiness of Louisiana State University.
- Csizmadia Zoltán. 2009. Együttműködés és újítóképesség: Kapcsolati hálózatok és innovációs rendszerek regionális sajátosságai (Cooperation and ability for renewing. Regional characteristics of networks). Budapest: Napvilág Kiadó.
- Dethier Jean-Jacques, Alexandra Effenberger. 2012. Agriculture and development: A brief review of the literature. Economic Systems 36 (2): 175-205, doi: 10.1016/j.ecosys.2011.09.003.
- Everett M. Rogers. 1962. Diffusion of Innovations. New Jork: Free Press of Glencoe.
- FAO. 2013. Climate-smart agriculture sourcebook food and agriculture organization of the UN.
- Fenn Jackie, Mark Raskino. 2008. Mastering the hype cycle: How to choose the right innovation at the right time. Brighton, Boston: Harvard Business Press.
- Fogarassy Csaba, András Nábrádi. 2015. Proposals for low-carbon agriculture production strategies between 2020 and 2030 in Hungary. APSTRACT - Applied Studies in Agribusiness and Commerce. E 9:(4) pp. 5-16.
- Grainger-Jones Elwyn. 2012. Climate-smart smallholder agriculture: What's different? Occasional paper 3. International Fund for Agricultural Development
- Husti István. 2003. Az agrárműszaki-fejlesztés elméleti alapjai [In] Fejezetek a mezőgazdaság műszaki- -fejlesztéséből Dimény Imre akadémikus 80. Születésnapjára (Theoretical bases of agricultural technology development [In] Chapters on the technical development of agriculture Imre Dimény's 80th birthday), ed. Fenyvesi László, 12-15. Gödöllő FVMMI 30: 78-85.
- Jámbor Attila, Nuno Carlos Leitao. 2017. Economic Growth and sustainable development: evidence from Central and Eastern Europe. International Journal of Energy Economics and Policy 7 (5): 171-177.
- Latouche Serge. 2007. Petit traité de la décroissance sereine (Farewell to growth). Paris: Fayard.
- Latouche Serge. 2011. Tactful charm of degrowth. Szombathely. Savaria Uni. Press.
- Lencsés Enikő, István Takács, Katalin Takács-György. 2014. Farmers' perception of precision farming technology among Hungarian farmers. Sustainability 6: 8452-8465, doi:10.3390/su6128452.
- Maciejczak Mariusz. 2012. The concept of SMART specialization in the development of agribusiness sector on the example of clusters of innovations in agribusiness in Mazovia Province. Annals of the Polish Association of Agricultural and Agribusiness Economists XIV (6): 169-176.
- Maciejczak Mariusz. 2016. Real-time delphi survey on competition and competitiveness of geographical indications as a negotiations issue of the transatlantic trade and investment partnership. Acta Scientiarium Polonium 15 (1): 65-74.
- Maciejczak Mariusz. 2017. Bioeconomy as a complex adaptive system of sustainable development. Journal of International Business Research and Marketing 2 (2): 7-10.
- Maciejczak Mariusz, Janis Faltmann. 2017. Sustainable intensification of modern agriculture through production technologies on different readiness levels. [In] Proceedings of IX International Scienfic Symposium "Farm Machinery and Processes Management In Sustainable Agriculture". Lublin, Poland, 22-24 November 2017, p. 216-222.
- Mensah Adelia Maria, Luciana Camargo Castro. 2004. Sustainable Resource Use & Sustainable Development: A Contradiction. Working Paper. Bonn: (ZEF) Center for Development Research University of Bonn.
- Mwongera Caroline, Kelvin Shikuku, Jennifer Twyman, Peter Läderach, Edidah Ampaire, Van Piet Asten, Steve Twomlow, Leigh A. Winowiecki. 2017. Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agricultural Systems 151: 192-203, doi: 10.1016/j.agsy.2016.05.009.
- Oláh Judit, Péter Lengyel, Péter Balogh, Mónika Harangi-Rákos, József Popp. 2017. The role of biofuels in food commodity prices volatility and land use. Journal of Competitiveness 9 (4): 81-93.
- Parry Martin. 1992. The potential effect of climate changes on agriculture and land use. Advances in Ecological Research 22: 63-91, doi: 10.1016/S0065-2504(08)60133-6.
- Popp József, László Váradi, Emese Békefi, András Péteri, Gergő Gyalog, Zoltán Lakner, Judit Oláh. 2018. Evolution of integrated open aquaculture systems in hungary: results from a case study. Sustainability 10 (1): 177.
- Sain Gustavo, Ana María Loboguerrero, Caitlin Corner-Dolloff, Miguel Lizarazo, Andree Nowak, Deissy Martínez-Baróna, Nadine Andrieu. 2017. Costs and benefits of climate-smart agriculture: The case of the Dry Corridor in Guatemala. Agricultural Systems 151: 163-173, doi: 10.1016/j.agsy.2016.05.004.
- Takács-György Katalin, Enikő Lencsés, István Takács. 2013. Economic benefits of precision weed control and why itsuptake is so slow. Studies in Agircultural Economics 115 (1): 40-46.
- Takacs István. 2008. Change of asset efficiency in EU agriculture: challenges for new members. [In] Proceedings of the International Congress of European Association of Agricultural Economists, August 26-29, 2008, Ghent, Belgium.
- Vanclay Frank M., Wendy Russell, Julie Kimber. 2013. Enhancing innovation in agriculture at the policy level: The potential contribution of technology assessment. Land Use Policy 31: 406-411, doi: 10.1016/j.landusepol.2012.08.004.
- Verschuuren Jonathan. 2017. Towards a regulatory design for reducing emissions from agriculture: lessons from Australia's carbon farming initiative. Climate Law 7 (1): 1-51.
- Wicki Ludwik. 2017. Changes in land use for production of energy crops in Poland. Roczniki Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich 104 (4): 37-47. doi: 10.22630/RNR.2017.104.4.31.
- Wolfert Sjaak, Lan Ge, Cor Verdouw, Marc-Jeroen Bogaardt. 2017. Big data in smart farming - A review. Agricultural Systems 153: 69-80, doi:10.1016/j.agsy.2017.01.023.
- Cytowane przez
- ISSN
- 1508-3535
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.5604/01.3001.0011.8125