BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Czupryna Marcin (Szkoła Główna Handlowa w Warszawie), Szufel Przemysław (Szkoła Główna Handlowa w Warszawie), Kamiński Bogumił (Szkoła Główna Handlowa w Warszawie), Wiertlewska Anna (Szkoła Główna Handlowa w Warszawie)
Tytuł
O estymacji preferencji w sztucznych sieciach społecznych
Preference Elicitation in Synthetic Social Networks
Źródło
Optimum : studia ekonomiczne, 2017, nr 3(87), s. 31-47, rys., bibliogr. s. 47
Słowa kluczowe
Preferencje, Symulacja wieloagentowa, Analiza sieci społecznych
Preferences, Multi-agent based simulation, Social Network Analysis (SNA)
Uwagi
Klasyfikacja JEL: C6, C8, C9, R5
summ., streszcz.
Niniejsze prace badawcze zostały zrealizowane w ramach projektu ROUTE-TO-PA (Raising Open and User-friendly Transparency-Enabling Technologies for Public Administrations) [http://routetopa.eu/], który jest finansowany ze środków Europejskiego Programu w Zakresie Badań Naukowych i Innowacji "Horizon 2020" na podstawie umowy o dotację nr 645860
Abstrakt
W artykule rozważano scenariusz, w którym administracja publiczna wykorzystuje internetową platformę społecznościową do komunikacji z obywatelami i uzyskiwania informacji o ich preferencjach. Z platformy tej korzysta tylko część całej populacji (subpopulacja), co powoduje, że preferencje obserwowane na platformie mogą być niereprezentatywne dla całego społeczeństwa. W niniejszym opracowaniu uwzględniono dwa problemy związane z brakiem reprezentatywności preferencji, tj.: (1) odmienną strukturę demograficzną populacji i subpopulacji oraz (2) różnice w procesie dynamiki preferencji w całej populacji i subpopulacji wyrażającej swoje opinie na platformie społecznościowej. Dane wykorzystane w analizie obejmują informacje o aktywności użytkowników na platformie społecznościowej, ich dane socjodemograficzne oraz dane o populacji pochodzące ze spisu powszechnego. W celu badania dynamiki preferencji skonstruowano wieloagentowy model symulacyjny, w którym sieć społeczną przedstawiono za pomocą nieskierowanego grafu, gdzie węzły reprezentują obywateli, a łuki ich relacje społeczne. W procesie analizy najpierw jest generowana sztuczna populacja i na niej jest symulowana dynamika preferencji. Następnie losowo, metodą kuli śnieżnej (ang. snowball sampling) są wybierane różne niereprezentatywne subpopulacje, na których są testowane algorytmy uogólniania preferencji przez odtwarzanie dynamiki całej populacji. Miarą jakości modelu jest zgodność preferencji między subpopulacją a całą populacją. Rezultaty przeprowadzonych symulacji wskazały na skuteczność zastosowanej metody: wraz z kolejnymi krokami symulacji wzrasta zgodność między populacją rzeczywistą a syntetyczną. Okazało się również, że najistotniejszymi determinantami błędów uogólniania preferencji są model dyfuzji preferencji oraz waga opinii własnej agenta. (abstrakt oryginalny)

The paper considers a scenario in which public administration (PA) uses an online social platform to collect information on citizens' preferences. However, the opinions of the sub-population that uses the online platform might be not representative. The author develops a method for generalization of the dynamics of the preferences observed on the social platform onto the entire population. The available data include information collected by the PA from the online platform (assuming that it is run and administered by the PA) and census data regarding the population. Hence, the PA has access to basic personal data of platform users (e.g. gender and age), position in the online social network, and opinions revealed on the platform. The online users' data can be analyzed along with the aggregated census data on the entire population. The author has implemented a multi-agent simulation model that takes into account the distribution of personal attributes, social network data, and opinion diffusion dynamics. The analysis involves showing how different algorithms enable generalization of preferences collected by the online platform to the entire population. The results of the analysis prove that the proposed method is efficient in the preference elicitation process - with each simulation step, the preference congruence level between real and synthetic populations increases. The main determinants of preference elicitation errors include the preference diffusion model and the weight of the agents' own opinions. (original abstract)
Dostępne w
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Acemoglu D., Ozdaglar A., 2011, Opinion Dynamics and Learning in Social Networks, "Dynamic Games and Applications", vol. 1 (1).
  2. Axtell R. L., 2007, What economic agent do: How cognition and interaction lead to emergence and complexity, "Review Austrian Economics", no. 20, DOI 10.1007/s11138-007-0021-5.
  3. Barton R. R., 1992, Metamodels for simulation input-output relations, [in:] Proceedings of the 1992 Winter Simulation Conference, J. Swain, D. Goldsman, R. Crain, J. Wilson (eds.), IEEE.
  4. Bertot J. C., Jaeger P. T., Grimes J. M., 2010, Using ICTs to create a culture of transparency: E-government and social media as openness and anti-corruption tools for societies, "Government Information Quarterly", no. 27.
  5. De Groot M. H., 1977, Reaching a Consensus, "Journal of the American Statistical Association", no. 69.
  6. Fagiolo G., 1998, Spatial interactions in dynamic decentralized economies: a review, "The Economics of Networks", DOI 10.1007/978-3-642-72260- 8_3.
  7. Frank O., 1974, Survey sampling in graphs, "Journal of Statistical Planning and Inference", vol. 126.
  8. Haung Z., Williamson P., 2001, A comparison of synthetic reconstruction and combinatorial optimization approaches to the creation of the small-area microdata, "Working Paper", no. 2, University of Liverpool.
  9. Kamiński B., 2012, Podejście wieloagentowe do modelowania rynków. Metody i zastosowania, Oficyna Wydawnicza Szkoły Głównej Handlowej, Warszawa.
  10. Kamiński B., 2015, Interval metamodels for the analysis of simulation Input - Output relations, "Simulation Modeling Practice and Theory", no. 54.
  11. Kleijnen J. P., Sargent R. G., 2000, A methodology fitting and validating metamodels in simulation, "European Journal of Operational Research", no. 120 (1).
  12. Krause U., 2000, A Discrete Nonlinear and Nonautonomous Model of Consensus Formation, [in:] Communications in Difference Equations, J. Rakowski (ed.), Gordon and Breach, Amsterdam.
  13. Oeffner M., 2009, Agent - Based Keynesian Macroeconomics - An Evolutionary Model Embedded in an Agent-Based Computer Simulation, MPRA Paper, no. 18199, The Munich University Library, Munich.
  14. Pyka A., Fagiolo G., 2005, Agent-based modelling: A methodolgy for Neo- Schumpeterian economics, Discussion Paper Series, no. 272, University of Augsburg, Augsburg.
  15. Santos I. R., Santos P. R., 2007, Simulation metamodels for modeling output distribution parameters, [in:] Proceedings of the 2007 Winter Simulation Conference, R. Barton (ed.), IEEE.
  16. Tesfatsion L., 2002, Agent-Based Computational Economics: Growing Economies From the Bottom Up, "Artificial Life", vol. 8, no. 1, DOI 10.1162/106454602753694765.
  17. Windrum P., Fagiolo G., Moneta A., 2007, Empirical Validation of Agent-Based Models: Alternatives and Prospects, "Journal of Artificial Societies and Social Simulation", no. 10(2).
Cytowane przez
Pokaż
ISSN
1506-7637
Język
pol
URI / DOI
http://dx.doi.org/10.15290/ose.2017.03.87.03
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu