- Autor
- Wójcicka Aleksandra (Uniwersytet Ekonomiczny w Poznaniu)
- Tytuł
- Classification of Trade Sector Entities in Credibility Assessment Using Neural Network
- Źródło
- Optimum : studia ekonomiczne, 2017, nr 3(87), s. 153-161, rys., tab., bibliogr. s. 160-161
- Słowa kluczowe
- Ryzyko kredytowe, Bankructwo, Sieci neuronowe
Credit risk, Bankruptcy, Neural networks - Uwagi
- Klasyfikacja JEL: C45, G33, G11
summ. - Abstrakt
- One of the most valid tasks in credit risk evaluation is the proper classification of potential good and bad customers. Reduction of the number of loans granted to companies of questionable credibility can significantly influence banks' performance. An important element in credit risk assessment is a prior identification of factors which affect companies' standing. Since that standing has an impact on credibility and solvency of entities. The research presented in the paper has two main goals. The first is to identify the most important factors (chosen financial ratios) which determine company's performance and consequently influence its credit risk level when granted financial resources. The question also arises whether the line of business has any impact on factors that should be included in the analysis as the input. The other aim was to compare the results of chosen neural networks with credit scoring system used in a bank during credit risk decision-making process. (original abstract)
- Dostępne w
- Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach - Pełny tekst
- Pokaż
- Bibliografia
- Bragg S. M., 2010, Wskaźniki w analizie działalności przedsiębiorstwa, Oficyna Wolters Kluwer Business
- Gaudart J., Giusiano B., Huiart L., 2004, Comparsion of the Performance of Multi-Layer Perceptron and Linear Regression for Epidemiological Data, "Computional Statistics & Data Analysis" vol. 44.
- Haykin S., 2011, Neural Networks and Learning Machines. Third Edition, PHI Learning Private Limited, New Dehli-110001
- Kowalski P.A., 2011, An Evolutionary Strategy for Fuzzy Flip-Flop Neural Networks Learning, XIII Krajowa Konferencja, Algorytmy Ewolucyjne i Optymalizacja Globalna, (KAEiOG 2011), Warsaw (Poland), 21-22 September 2011
- Nigrin A., 1993, Neural Networks for Pattern Recognition, Massachusetts Institute of Technology.
- STATISTICA HELP http://documentation.statsoft.com/.
- West D., 2000, Neural Network Credit Scoring Models, "Computers and Operations Research", vol. 27.
- Wójciak M., Wójcicka A., 2008, Zdolności dyskryminacyjne wskaźników finansowych w ocenie kondycji finansowej podmiotów gospodarczych, [in] Taksonomia 15: Klasyfikacja i analiza danych - teoria i zastosowania, Uniwersytet Ekonomiczny we Wrocławiu
- Wójciak M., Wójcicka A., 2009, The Discriminative Ability of Financial Ratios to Evaluate the Credit Risk Level [in]: Metody matematyczne, ekonometryczne i komputerowe w finansach i ubezpieczeniach 2007, ed. P. Chrzan, T. Czernik, Wydawnictwo Akademii Ekonomicznej (AE) w Katowicach
- Wójcicka A., 2012, Calibration of a Credit Rating Scale for Polish Companies, "Operations Research and Decisions", no. 3.
- Wójcicka A., 2016a, Credit-Risk Decision Process Using Neural Networks in Industrial Sectors, referat wygłoszony w dniu 21.10.2016 na konferencji International Conference on Accounting, Finance and Financial Institutions. Theory Meets Practice, Poznań 19- 21.10.2016.
- Wójcicka A., 2016b, Neural Networks in Credit Risk Evaluation of Construction Sector, referat wygłoszony w dniu 16.09.2016 na: Econometric Research in Finance Workshop w Warszawie.
- Wójcicka A., Wójtowicz T., 2009, Wykorzystanie analizy wskaźnikowej w ocenie zdolności kredytowej przedsiębiorstwa - szanse i zagrożenia, "Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego (SGGW) w Warszawie: Ekonomika i Organizacja Gospodarki Żywnościowej", nr 78.
- Cytowane przez
- ISSN
- 1506-7637
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.15290/ose.2017.03.87.11