- Autor
- Wycinka Ewa (University of Gdansk, Poland)
- Tytuł
- Competing Risk Models of Default in the Presence of Early Repayments
Zastosowanie modeli zdarzeń konkurujących do oceny ryzyka kredytowego - Źródło
- Econometrics. Advances in Applied Data Analysis, 2019, vol. 23, nr 2, s. 99-120, rys., tab., bibliogr. 43 poz.
Ekonometria - Słowa kluczowe
- Model proporcjonalnego hazardu Coxa, Analiza zdarzeń, Ryzyko kredytowe, Ekonometria
Cox proportional hazard model, Event study, Credit risk, Econometrics - Uwagi
- Klasyfikacja JEL: C14, C34, H81
streszcz., summ. - Abstrakt
- Jednym z podstawowych zadań instytucji kredytowych jest ocena ryzyka kredytowego, którego podstawowym elementem jest ocena niewypłacalności kredytobiorcy. Wielkość portfela kredytowego może zmniejszać się w czasie z powodu nie tylko wystąpienia niewypłacalności, ale również wcześniejszych spłat kredytów. Zmienia to prawdopodobieństwo niewypłacalności w kolejnych okresach. Szacując prawdopodobieństwo niewypłacalności, należy więc uwzględnić prawdopodobieństwo wcześniejszych spłat w kolejnych okresach, co można osiągnąć za pomocą modeli zdarzeń konkurujących. W badaniu do oceny ryzyka niewypłacalności zaproponowano wybrane modele regresji dla zdarzeń konkurujących. Rozważane są modele: hazardu według przyczyny, hazardu subrozkładu, mieszanki modeli (podejście horyzontalne i wertykalne) oraz modele uogólnionych równań estymacyjnych GEE dla pseudoobserwacji. Badanie empiryczne przeprowadzono na próbie portfela kredytów udzielonych przez jedną z instytucji finansowych w Polsce.(abstrakt oryginalny)
One of the central tasks of credit institutions is credit risk assessment, in which the estimation of the probability of default is an important element. The size of an institution's credit portfolio can decrease as a result of early repayments, which changes the probability of default over time. Prognosis of the probability of default should therefore also take into consideration the prognosis of early repayments. In this paper, methods of evaluating the probability of default over time, using competing risks regression models, are considered. Methods of evaluation for models of default over time are proposed. A sample of retail credits, provided by a Polish financial institution, was empirically examined.(original abstract) - Dostępne w
- Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu - Pełny tekst
- Pokaż
- Bibliografia
- Andersen P.K., Klein J.P., Rosthøj S., 2003, Generalised linear models for correlated pseudoobservations, with applications to multi-state models, Biometrika, 90, pp. 15-27.
- Andersen P.K., Perme M., 2010, Pseudo-observations in survival analysis, Statistical Methods in Medical Research, 19(1), pp. 71-99.
- Banasik J., Crook J.N., Thomas L.C., 1999, Not if but when borrowers default, The Journal of the Operational Research Society, 50(12), pp. 1185-1190.
- Beyersmann J., Schumacher M., 2007, Misspecified regression model for the subdistribution hazard of a competing risk by Latouche A, Boisson V, Chevret S and Porcher R., Statistics in Medicine 2006; Statistics in Medicine, 26, pp. 1649-1651.
- Blanche P., 2015, timeROC: Time-Dependent ROC Curve and AUC for Censored Survival Data. URL https://CRAN.R-project.org/package=timeROC, R package version 0.3.
- Blanche P., Dartigues J.F., Jacqmin-Gadda, H. 2013, Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks, Statistics in Medicine, 32(30), pp. 5381-5397.
- Chang I.-S., Hsiung C.A., Wen C.-C., Wu Y.-J., Y ang C .-C., 2007, Non-parametric maximumlikelihood estimation in a semiparametric mixture model for competing-risks data, Scandinavian Journal of Statistics, 34, pp. 870-895.
- Chen Ch.-H., Chang I-S., Hsiung C.A. 2015, NPMLEcmprsk: Type-Specific Failure Rate and Hazard Rate on Competing Risks Data, URL https://cran.r-project.org/web/packages/NPML Ecmprsk, R package version 2.1.
- Ciochetti D., Deng Y ., G ao B ., Y ao R . 2002, The termination of commercial mortgage contracts through prepayment and default: a proportional hazards approach with competing risks, Real Estate Economics, 30(4), pp. 595-633.
- Cox D., 1972, Regression models and life-tables, Journal of the Royal Statistical Society. Series B (Methodological), 34(2), pp. 187-220.
- Cox D., Oakes D., 1984, Analysis of Survival Data, Chapman and Hall.
- Crowder M., 2001, Classical Competing Risks, CRC Press, London.
- Deng Y., Quigley J., Van Order R., 2000, Mortgage termination, heterogeneity, and the exercise of mortgage options, Econometrica, 68(2), pp. 275-307.
- Fine J.P., Gray R.J., 1999, A proportional hazards model for the subdistribution of a competing risk, Journal of the American Statistical Association, 94, pp. 496-509.
- Grambauer N., Schumacher M., Beyersmann J., 2010, Proportional subdistribution hazards modeling offers a summary analysis, even if misspecified, Statistics in Medicine, 29, pp. 875-884.
- Gray B., 2014, cmprsk: Subdistribution Analysis of Competing Risks. URL http://CRAN.Rproject. org/package=cmprsk, R package version 2.2-7.
- Gray R., 1988, A class of k-sample tests for comparing the cumulative incidence function in the presence of a competing risk, The Annals of Statistics, 16, pp. 1141-1154.
- Haller B., Schmidt G., Ulm K., 2013, Applying competing risks regression models: an overview, Lifetime Data Analysis, 19, pp. 33-58.
- Højsgaard S., Halekoh U., Yan J., 2016, geepack: Generalized Estimating Equation Package, URL https://CRAN.R-project.org/package=geepack, R package version 1.2_1.
- Klein J.P., Andersen P.K., 2005, Regression modelling of competing risks data based on pseudovalues of the cumulative incidence function, Biometrics, 61(1), pp. 223-229.
- Kleinbaum D., Klein M., 2012, Survival Analysis. A Self-Learning Text, Third Edition, Springer- -Verlag, New York.
- Larson M.G., Dinse G.E., 1985, A mixture model for the regression analysis of competing risks data. Journal of the Royal Statistical Society. Series C, 34, pp. 201-211.
- Lau B., Cole S.R., Moore R.D., Gange S.J., 2008, Evaluating competing adverse and beneficial outcomes using a mixture model, Statistics in Medicine, 27(21), pp. 4313-4327.
- Lawless J.F., 2003, Statistical Models and Methods for Lifetime Data, John Wiley and Sons, Inc., New York.
- Li J., Scheike T.H., Zhang M.J., 2015, Checking Fine & Gray subdistribution hazards model with cumulative sums of residuals, Lifetime Data Analysis, 21(2), pp. 197-217.
- Liang K., Zeger S., 1986, Longitudinal data analysis using generalized linear models, Biometrika, 73(1), pp. 13-22.
- Lin D.Y., Wei J.L., Ying Z., 1993, Checking the Cox model with cumulative sums of Martingale based residuals, Biometrika, 80(3), pp. 557-572.
- Lindqvist H., 2008, Competing Risks. Encyclopedia of Statistics in Quality and Reliability, Wiley, Chichester.
- Narain B., 1992, Survival Analysis and the Credit-Granting Decision, [in:] Thomas L., Crook J., Edelman D. (ed.), Credit Scoring and Credit Control, Oxford University Press, pp. 109-122.
- Ng S.K., McLachlan G.J., 2003, An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data, Statistics in Medicine, 22, pp. 1097-1111.
- Nicolaie M.A., van Houwelingen H.C., Putter H., 2010, Vertical modeling: a pattern mixture approach for competing risks modeling, Statistics in Medicine, 29, pp. 1190-1205.
- Pavlov A.D., 2001, Competing risks of mortgage termination: who refinances, who moves, and who defaults?, The Journal of Real Estate Finance and Economics, 23, pp. 185-211.
- Peterson A., 1976, Bounds for a joint distribution function with fixed sub-distribution functions: application to competing risks, Proceedings of the National Academy of Sciences of the United States of America, 73(1), pp. 11-13.
- Pintilie M., 2006, Competing Risks: a Practical Perspective, Wiley, Chichester.
- Pohar Perme M., Gerster M., Rodrigues K., 2017, Package pseudo, https://CRAN.R-project.org/ package=pseudo, R package version 1.4.3.
- Prentice R., Kalbfleisch J., Peterson A., Flournoy N., Farewell V., Breslow N., 1978, The analysis of failure times in the presence of competing risks, Biometrics 34, pp. 541-554.
- R Development Core Team, 2017, R: A Language and Environment for Statistical Computing, the R Foundation for Statistical Computing, Vienna, Austria.
- Sfumato P., Boher J.M., 2017, goftte: Goodness-of-Fit for Time-to-Event Data, https://CRAN. R-project.org/package=goftte, R package version 1.0.5.
- Steinbuks J., 2015, Effects of prepayment regulations on termination of subprime mortgages, Journal of Banking and Finance, 59C, pp. 445-456.
- Stepanova M., Thomas L., 2002, Survival analysis methods for personal loan data, Operations Research, 50(2), pp. 277-289.
- Therneau T.M., 2017, Survival: Survival analysis, http://CRAN.R-project.org/package=survival, R package version 2.41-3.
- Therneau T.M., Grambsch P.M., 2000, Modeling Survival Data: Extending the Cox Model, Springer, New York.
- Tsiatis A., 1975, A non-identifiability aspect of the problem of competing risks, Proceedings of the National Academy of Sciences of the United States of America, 72(1), pp. 20-22.
- Cytowane przez
- ISSN
- 1507-3866
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.15611/eada.2019.2.07