- Autor
- Wójtowicz Agnieszka (University of Life Sciences in Lublin, Poland)
- Tytuł
- Selected Properties of Multilayer Films Applied for Vacuum and Modified Atmosphere Packaging Systems
- Źródło
- Agricultural Engineering, 2018, R. 22, nr 4 (168), s. 89-98, tab., wykr., bibliogr. 18 poz.
- Słowa kluczowe
- Maszyny i urządzenia, Produkcja, Rolnictwo
Machinery and equipment, Production, Agriculture - Uwagi
- summ., streszcz.
- Abstrakt
- Celem badań było określenie wybranych właściwości materiałów opakowaniowych mających zastosowanie do pakowania próżniowego i w modyfikowanej atmosferze (MAP). Badaniom poddano sześć rodzajów folii wielowarstwowych o różnym składzie, oceniając grubość, gramaturę, gęstość oraz cechy mechaniczne w testach rozciągania i przebicia. W eksperymentach wykorzystano maszynę wytrzymałościową Zwick/Roell wyposażoną w szczęki rozciągające i trzpień do przebijania. Moduł rozciągania, wytrzymałość na rozciąganie, wydłużenie przy wytrzymałości na rozciąganie, naprężenie przy zerwaniu i pracę przy zniszczeniu wyznaczono podczas testu na rozciąganie, zaś siłę przebicia, pracę przebicia i wydłużenie przy zniszczeniu oceniano za pomocą testu przebicia, przy prędkości badania 100 mm min-1. Uzyskane wyniki pozwalają stwierdzić, że grubość i gramatura folii opakowaniowych stosowanych do pakowania próżniowego była wyższa w porównaniu z materiałami używanymi w systemie MAP. Analizując wyniki modułu rozciągania i naprężenia przy zerwaniu zauważono, że materiały stosowane do pakowania w systemie MAP charakteryzowały się lepszymi właściwościami, natomiast wydłużenie przy wytrzymałości na rozciąganie było wyższe dla folii używanych do pakowania próżniowego, z wyjątkiem folii z warstwą metalizowaną. Najwyższą odporność na przebicie oceniono podczas badania folii OPET/PE stosowanej w opakowaniach MAP. Wydłużenie przy zniszczeniu w teście przebicia było wyższe dla folii przeznaczonych do pakowania próżniowego, co sugeruje ich lepszą odporność na uszkodzenia mechaniczne. Stwierdzono istotne korelacje pomiędzy właściwościami fizycznymi i mechanicznymi folii wielowarstwowych.(abstrakt oryginalny)
The aim of the research was to determine the selected properties of packaging materials applicable for vacuum and modified atmosphere packaging. Six samples of multilayer films with different composition were tested to evaluate the thickness, basic weight, density and the mechanical properties in elongation and puncture tests. Zwick/Roell apparatus equipped with elongation jaws and a puncture pin was used in the experiments. The tensile modulus, tensile strength, elongation at tensile strength, stress at break and work at break were investigated with the elongation test, whereas the breaking force, puncture work and extension at break were evaluated with the puncture test. The obtained results allow conclusion that the thickness and basic weight of the packaging films used in the vacuum system was higher comparing with the MAP system. Analyzing the results of the elongation modulus and stress at break it was reported that the materials used for food packaging in the MAP system were characterized with better properties, whereas elongation at the tensile strength was higher for films applied in the vacuum system, except for a film with a metalized layer. The highest resistance for puncture was evaluated for OPET/PE film used in MAP packaging. The extension at break under the puncture test was higher for films dedicated for vacuum packaging suggesting their better resistance for the mechanical damage by a thin pin. Several correlations between physical and mechanical properties of multilayer films were found.(original abstract) - Pełny tekst
- Pokaż
- Bibliografia
- ASTM D63805:2008. Standard test method for tensile properties of plastics.
- ASTM D882:2010. Standard test method for tensile properties of thin plastic sheeting.
- Brennan, J., Day, B. (2006). Packaging. In: Food Processing Handbook. Ed. J. Brennan, WILEYVCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 291-350.
- Butler T.I., Morris B.A. (2013). PE-based multilayer film structures. In: Plastic Films in Food Packaging. Materials. Technology and Applications. Ed. Ebnesajjad S., Plastics Design Library, Elsevier Inc., Oxford, UK, 21-52.
- Chocyk, D., Gładyszewska, B., Ciupak, A., Oniszczuk, T., Mościcki, L., Rejak A. (2015). Influence of water addition on mechanical properties of thermoplastic starch foils. International Agrophysics, 29(3), 267-275.
- Czerniawski, B., Michniewicz, J. (1998). Opakowania Żywności. AGRO-FOOD-TECHNOLOGY, Czeladź.
- Davis, J.R. (2004). Tensile testing. ASM International. Overseas Publishers Association, California, USA.
- DIN EN 14477:2004. Packaging. Flexible packaging material - Determination of puncture resistance - Test methods.
- Guillard, V., Mauricio-Iglesias, M., Gontard, N. (2010). Effect of novel food processing methods on packaging: structure, composition, and migration properties. Critical Reviews in Food Science and Nutrition, 50, 969-988.
- Kacenak, I., Dandar, A., Sekretar, S. (2005). Nowoczesne sposoby pakowania, a ich wpływ na jakość i trwałość produktów, Przemysł Spożywczy, 59(9), 20-25.
- Maeda, T., Endo, F., Hotta A. (2015). Highly functionalized polyethylene terephthalate for food packaging. In: Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites. Eds. Visakh P.M., Liang M., Elsevier Inc., William Andrew, Oxford, UK, 213-234.
- Mirosław, B. (2010). Opakowania giętkie - nowe materiały i rozwiązania, Przemysł Spożywczy, 64(7/8), 68-72.
- Mosleh, M., Suh, N.P., Arinez, J. (1998). Manufacture and properties of a polyethylene homocomposite. Composites Part A: Applied Science and Manufacturing, 29(5-6), 611-617.
- Olech E., Kuboń M. (2016). Clients' preferences and development of organic food distribution channels. Agricultural Engineering, 20(1), 119-125.
- Panfil-Kuncewicz, H., Kuncewicz, A., Mieczkowska, M. (2011). Postęp w pakowaniu produktów spożywczych. Przemysł Spożywczy, 65(7/8), 84-90.
- Rejak, A., Wójtowicz, A., Oniszczuk, T. (2013). Wybrane właściwości folii skrobiowych z dodatkiem poli(alkoholu winylowego) i oleju lnianego. Przemysł Chemiczny, 92(11), 2022-2026.
- Sazali, M.Q., Suffian, M.S.Z.M., Khan, A.A., Yassin, A., Mohamaddan, S., Yusof, M., Rashidi, S.A., Saad, M.H.I. (2016). The effect of thermal perturbation on a polymer material's tensile test via simulation and experimental analysis. Journal of Telecommunication, Electronic and Computer Engineering, 8(12), 141-145.
- Sharon, C., Sharon, M. (2012). Studies on biodegradation of polyethylene terephthalate: A synthetic polymer. Journal of Microbiology and Biotechnology Research, 2(2), 248-257.
- Cytowane przez
- ISSN
- 2083-1587
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.1515/agriceng-2018-0040