BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Pelinescu Elena (Romanian Academy, Bucharest, Romania), Simionescu Mihaela (Romanian Academy, Bucharest, Romania)
Tytuł
Higher Education Policies and Employability of University Graduates in the EU-28
Źródło
Journal of Intercultural Management, 2019, vol. 11, nr 3, s. 105-133, tab., aneks, bibliogr. 40 poz.
Słowa kluczowe
Szkolnictwo wyższe, Absolwenci szkół wyższych, Reforma oświaty
Higher education, Higher education graduates, Educational system reforms
Uwagi
Klasyfikacja JEL: C53, I23, I28
summ.
Firma/Organizacja
Unia Europejska (UE)
European Union (EU)
Abstrakt
Objective: The main purpose of this research is to analyze and reveal if the recent policy measures in higher education carried in European Union member countries have had a significant impact on the labour market integration of university graduates.
Methodology: We selected a set of indicators that were common in the 2015 and 2016 editions of Structural Indicators for Monitoring Education and Training Systems in Europe and could offer an image of intensity of higher education policies in relation with labour market at European level. We further used these measures to test for any significant effects of the policies on the integration of graduates in the labour market.
Findings: We found significant effects of various policy measures in high education in the European countries. We estimate a positive role for factors like monitoring of completion rates, requirements for the staff to have higher education, presence of educational guidelines, and recognition of formal and informal learning for entry in higher education.
Value Added: This is the first study to address the impact of high education policies carried in European countries on the integration of college graduates. The study is distinct through both the design of new measures of higher education policy in Europe as well through testing whether the intensity of policies carried for higher education has affected the employability of young graduates or not.
Recommendations: The results of this empirical research allow us to make some recommendations for improving the insertion of young graduates on European labour market. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Aghion, P. (2008). Higher Education and Innovation. Perspektiven der Wirtschaftspolitik, 9(1), 28-45.
  2. Bock, R. D. (1983). Within-subject experimentation in psychiatric research. Statistical and methodological advances in psychiatric research, 10, 59-90.
  3. Bock, R. D. (1989). Addendum: measurement of human variation: a two-stage model. Multilevel analysis of educational data, 22, 319-342.
  4. Böckerman, P., & Haapanen, M. (2010). The Effect of Education on Mogration: Evidence from School Reform. Working Paper of School of Business and Economics, 36, 1-25.
  5. Bridges, D., Juceviciene, P., Jucevicius, T., & Stankeviciute, J. (2007). Higher Education and National Development: Universities and Societies in Transition. Milton Park: Routledge.
  6. Bryk A.S., & Raudenbush S. W. (1992). Hierarchical Linear Models: Applications and Data Analysis Methods. Newbury Park: Sage.
  7. De Leeuw, J., & Kreft, I. (1986). Random coefficient models for multilevel analysis. Journal of Educational Statistics, 11(1), 57-85.
  8. Dempster, A. P., Rubin, D. B., & Tsutakawa, R. K. (1981). Estimation in covariance components models. Journal of the American Statistical Association, 76(374), 341-353.
  9. European Commission (2010). Europe 2020 - A Strategy for a smart, sustainable and inclusive growth.
  10. European Commission (2011a). Supporting growth and jobs - An agenda for the modernisation of Europe's higher education systems.
  11. European Commission (2011b). The Seven Principles of Innovative Doctoral Training.
  12. European Commission /EACEA/Eurydice (2015). Structural Indicators for Monitoring Education and Training Systems in Europe - 2015. Eurydice Background Report to the Education and Training Monitor 2015 Eurydice Report. Luxembourg: Publications Office of the European Union.
  13. European Commission (2015). Labour Market and Wage Development in Europe 2015. Employment, Social Affairs & Inclusion, Brussels.
  14. European Commission/EACEA/Eurydice (2015). European Higher Education Area in 2015. Bologna Process Implementation Report. Luxembourg: Publications Office of the European Union.
  15. European Commission/EACEA/Eurydice (2016). Structural Indicators for Monitoring Education and Training Systems in Europe - 2016. Eurydice Background Report to the Education and Training Monitor 2016 Eurydice Report. Luxembourg: Publications Office of the European Union.
  16. Eurostat, Statistics Explained (2017). Adult learning Statistics.
  17. Gibbons, R. D., Hedeker, D., & DuToit, S. (2010). Advances in analysis of longitudinal data. Annual review of clinical psychology, 6, 79-107.
  18. Gibbons, R. D., Hedeker, D., Waternaux, C., & Davis, J. M. (1988). Random regression models: a comprehensive approach to the analysis of longitudinal psychiatric data. Psychopharmacology Bulletin, 24(3), 438-443.
  19. Goldstein, H. (1995). Multilevel Statistical Models. New York: Halstead Press.
  20. Grecu, M., & Titan, E. (2016). Brain drain-Brain Gain, Evidence from the European Union. Journal of Applied Quantitative Methods, 11(3), 61-69.
  21. Hui, S. L., & Berger, J. O. (1983). Empirical Bayes estimation of rates in longitudinal studies. Journal of the American Statistical Association, 78(384), 753-760.
  22. Isărescu, M. C. (2017). The inflation Report (Raport asupra inflaţiei). National Bank of Romania.
  23. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38(4), 963-974.
  24. LaMotte, L. R. (1973). Quadratic estimation of variance components, Biometrics, 29, 311-330.
  25. Livanos, I. (2010). The Relationship between Higher Education and Labour Market in Greece: the Weakest Link?. Higher Education, 60(5), 473-489.
  26. Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74(4), 817-827.
  27. Morel, S. (2013). En Espagne, la fuite des cerveaux face à la crise. Le Monde, 20 May.
  28. Pelletier, B. (2011). L'Europe en crise et la fuite des cerveaux. Gestion des Risques Interculturels.
  29. Pencova, E., & Valkov, A. (2015). The Quality of Education: An Economic View. Journal of Process Management-New Technologies, International, 3(3), 26-33.
  30. Peng, H., & Lu, Y. (2012). Model selection in linear mixed effect models. Journal of Multivariate Analysis, 109, 109-129.
  31. Pinheiro, R., & Pillay, P. (2016). Higher Education and Economic Development in the OECD: Policy Lessons for Other Countries and Regions. Journal of Higher Education Policy and Management, 38(2), 150-166.
  32. Pinheiro, R., Benneworth, P., & Jones, C. A. (2012). Universities and Regional Development: a Critical Assessment of Tensions and Contradictions. Milton Park: Routledge.
  33. Rao, C. R., Rao, C. R., & Statistiker, M. (1973). Linear statistical inference and its applications. New York: Wiley.
  34. Robert, P. (2014). Job Mismatch in Early Career of Graduates under Post-Communism. International Journal of Manpower, 35(4), 500-513.
  35. Searle, S., Cassella, G., & McCullouch, C. (1992). Variance Components. New York: John Wiley-Sons.
  36. Snijders, T. A. (2012). Multilevel analysis. In International encyclopedia of statistical science (pp. 879-882). Berlin Heidelberg: Springer.
  37. Sondergaard, L., & Murthi, M. (2012). Skills, Not Just Diplomas, Washington DC: World Bank.
  38. Stiwne, E. E., & Alves, M. G. (2010). Higher Education and Employability of Graduates: will Bologna make a difference?. European Educational Research Journal, 9(1), 32-44.
  39. Strenio, J. F., Weisberg, H. I., & Bryk, A. S. (1983). Empirical Bayes estimation of individual growth-curve parameters and their relationship to covariates. Biometrics, 39, 71-86.
  40. Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in statistics-Simulation and computation, 22(4), 1079-1106.
Cytowane przez
Pokaż
ISSN
2080-0150
Język
eng
URI / DOI
http://dx.doi.org/10.2478/joim-2019-0020
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu