BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Sari Emre Bilgin (Dokuz Eylul University, İzmir, Turkey)
Tytuł
Recovery Alternatives Decision by Using Fuzzy Based Preference Selection Index Method
Podejmowanie decyzji recycklingowych przy zastosowaniu metody wskaźnikowej wyboru preferencji
Źródło
LogForum, 2020, vol. 16, nr 1, s. 171-181, rys., tab., bibliogr. 30 poz.
Słowa kluczowe
Wielokryterialne podejmowanie decyzji
Multiple-criteria decision making
Uwagi
summ., streszcz.
Abstrakt
Wstęp: Przemysł elektryczny i elektroniczny to gałęzie przemysłu o dużej dynamice wzrostu i rozwoju, będącej wynikiem rozwoju technologicznego i ekonomicznego. Gwałtowne zmiany popytu i potrzeb konsumentów wpłynęły na wzrost zapotrzebowania na sprzęt elektroniczny oraz skróciły cykl życia produktu, co w efekcie doprowadziło do zwiększenia ilości odpadów sprzętowych. Dlatego też istotnie jest zajęcia się tematyką odzyskiwania części ze zużytego sprzętu elektrycznego i elektronicznego. Celem pracy jest ocenienie metod odzyskiwania elementów ze zużytych sprzętów oraz wybór najlepszej z tych metod. Metody: W wielu obszarach stosuje się techniki wielokryterialne podejmowania decyzji w celu dokonania wyborów pomiędzy różnymi alternatywami. Wybór metody odzyskiwania w oparciu o kryteria obejmuje zagadnienia modeli rozmytych. Z tego też powodu, zastosowano logikę rozmytą do oceny odpowiedzi osób decyzyjnych a uzyskanie liczby rozmyte zostały poddane metodzie PSI, w wyniku której uzyskano kryteria ważone jak i listę alternatyw. Wyniki: Na podstawie uzyskanych wyników stwierdzono, że kryteria odpowiedzialności i świadomości ekologicznej mają najwyższą wartość przy selekcji metod odzyskiwania. Dodatkowo, najczęściej wybieranymi metodami były: przerób, regeneracja oraz recykling. Wnioski: W istniejących obecnie uwarunkowaniach, odzyskiwanie elementów ze zużytego sprzętu elektrycznego i elektronicznego jest bardzo ważne. Metody alternatywne obejmują całą paletę od ponownego użycia do spalenia, jednakże prawidłowy wybór stosowanej techniki odzysku powinien opierać się na wielokryterialnym procesie decyzyjnym. (abstrakt oryginalny)

Background: The electrical and electronics sector has become one of the rapidly developing and growing sectors, as a result of technological and economic developments. Rapid changes in consumer demands and needs have increased the use of electrical and electronic equipment and shortened product life cycle, resulting in an increase in equipment waste. Therefore, recovery alternatives for electrical and electronic equipment waste should be considered subject. The aim of this study is to evaluate the recovery alternatives of electrical and electronic wastes and to determine the best. Methods: Multi-criteria decision-making techniques used to select the best among multiple alternatives have many application areas. The selection of recovery alternatives based on criteria includes some fuzzy topics. For this reason, the fuzzy logic approach was used to evaluate the answers of the decision makers and the fuzzy numbers obtained were analyzed by PSI method and criterion weights were determined and alternatives were listed. Results: According to results of analysis, social responsibility and environmental awareness criteria have the highest values for selecting recovery alternatives. In addition, remanufacturing, regeneration and recycling take the first place among the alternatives. Conclusions: Recovery of electrical and electronics waste is an important subject in current conditions. Alternative methods vary from reuse to incineration, but correct choice of recovery techniques rely on multi criteria and decision should be made adhering to them. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Agrawal S., Singh R.K., Murtaza Q., 2016. Disposition decisions in reverse logistics by using AHP-fuzzy TOPSIS approach, Journal of Modelling in Management, 11(4), 932- 948. http://doi.org/10.1108/JM2-12-2014-0091.
  2. Alcan P., Balin A., Başlıgil H., 2013. Fuzzy multicriteria selection among cogeneration systems: a real case application, Energy Build, 67, 624-634. http://doi.org/10.1016/j.enbuild.2013.08.04 8.
  3. Attri R., Grover S., 2015. Application of preference selection index method for decision making over the design stage of production system life cycle, Journal of King Saud University-Engineering Sciences, 27(2), 207-216. http://doi.org/10.1016/j.jksues.2013.06.003.
  4. Bilgin E., 2012. (original language) Tersine lojistik ağı tasarımı: Geri dönüşüm alanında bir uygulama. Yayınlanmamış Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü, İzmir. [translated in English] Reverse logistics network design: An application in the field of recycling. Unpublished Master's Thesis, Dokuz Eylül University Institute of Social Sciences, İzmir.
  5. Bouzon M., Govindan K., Rodriguez C.M.T., Campos L.M.S., 2016. Identification and analysis of reverse logistics barriers using fuzzy delphi method and AHP, Resources, Conservation and Recyling, 108, 182-197. http://doi.org/10.1016/j.resconrec.2015.05.0 21.
  6. Flylgansvaer B., Dahlstrom R., Nygaard A., 2018. Exploring the pursuit of sustainability in reverse supply chains for electronics, Journal of Cleaner Production, 189, 472484. http://doi.org/10.1016/j.jclepro.2018.04.014
  7. Hu Y., Wu S., Cai L., 2009/ Fuzzy multicriteria decision making TOPSIS for distribution center location selection. 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing, 2, 707-710, IEEE. http://doi.org/10.1109/NSWCTC.2009.102.
  8. Jindal A., Sangwan K.S., 2016. A fuzzy based decision support framework for product recovery process selection in reverse logistics, International Journal of Services and Operations Management, 25(4), 413439. http://doi.org/10.1504/IJSOM.2016.080274.
  9. Liu H.C., 2016, FMEA using uncertainty theories and MCDM methods. In FMEA Using Uncertainty Theories and MCDM Methods, 13-27, Springer, Singapore. http://doi.org/10.1007/978-981-10-14666_2.
  10. Liu H.C., Liu L., Liu N., Mao L.X., 2012. Risk evaluation in failure mode and effects analysis with extended Vikor method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. http://doi.org/10.1016/j.eswa.2012.05.031.
  11. Mahapatara S.S., Sharma S.K., Parappagoudar M.B., 2013. A novel multi-criteria decision making appraoch for selection of reverse manufacturing alternatives, International Journal of Services and Operations Management, 15(2), 176-195. http://doi.org/10.1504/IJSOM.2013.053644.
  12. Maniya K., Bhatt M.G., 2010. A selection of material using a novel type decisionmaking method: preference selection index method, Materials and Design, 31, 17851789. http://doi.org/10.1016/j.matdes.2009.11.020
  13. Mufazzal S., Muzakkir S.M., 2018. A new multi-criterion decision making (MCDM) method based on proximity indexed value for minimizing rank reversals, Computers and Industrial Engineering, 119, 427-438. http://doi.org/10.1016/j.cie.2018.03.045.
  14. Noryani M.I., Sapuan S.M., Mastura M.T., 2018. Multi-criteria decision-making tools for material selection of natural fibre composites: a review, Journal of Mechanical Engineering and Sciences Malaysia, 12(1), 3330-3353 http://doi.org/10.15282/jmes.12.1.2018.5.02 99.
  15. Prakash C., Barua M.K., 2016. An analysis of integrated robust hybrid model for thirdparty reverse logistics partner selection under fuzzy environment, Resources, Conservation and Recyling, 108, 63-81. http://doi.org/10.1016/j.resconrec.2015.12.0 11.
  16. Ravi V., Shankar R., Tiwari M.K., 2005. Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach, Computers and Industrial Engineering, 48, 327-356. http://doi.org/10.1016/j.cie.2005.01.017.
  17. Ravi V., Shankar R., 2012. Evaluating alternatives in reverse logistics for automobile organisations, International Journal of Logistics Systems and Management, 12(1), 32-51. http://doi.org/10.1504/IJLSM.2012.047057.
  18. Ravi V., Shankar R., Tiwari M.K., 2008. Selection of a reverse logistics project for end-of-life computers: ANP and goal programming, International Journal Of Production Research, 46(17), 4849-4870. http://doi.org/10.1080/00207540601115989
  19. Salehi, M., Tavakkoli-Moghaddam, R., 2008, Project selection by using a fuzzy TOPSIS technique. World Academy of Science, Engineering and Technology, 40, 85-90. http://doi.org/10.5281/zenodo.1327468.
  20. Samantra C., Sahu N.K., Datta S., Mahapatara S.S., 2013. Decision-making in selecting reverse logistics alternative using intervalvalued fuzzy sets combined with VIKOR approach, International Journal of Services and Operations Management, 14(2), 175196. http://doi.org/10.1504/IJSOM.2013.051828.
  21. Sanayei A., Mousavi S.F., Yazdankhah A., 2010. Group decision making process for supplier selection with vikor under fuzzy environment. Expert Systems with Applications, 37(1), 24-30. http://doi.org/10.1016/j.eswa.2009.04.063.
  22. Sawant V.B., Mohite S.S., Patil J., 2011. A decision-making framework using a preference selection index method for automated guided vehicle selection problem, International Conference on Technology Systems and Management (ICTSM), 12-16. http://doi.org/10.1007/978-3-642-202094_24.
  23. Sharma S.K., Mahapatra S.S., Parappagoudar M.B., 2016. Benchmarking of product recovery alternatives in reverse logistics, Benchmarking: An International Journal, 23(2), 406-424. http://doi.org/10.1108/BIJ-01-2014-0002.
  24. Sun Z., Cao H., Xiao Y., Sietsma J., Jin W., Agterhuis H., Yang Y., 2016. Toward sustainability for recovery of critical metals from electronic waste: the hydrochemistry processes. ACS Sustainable Chemistry and Engineering, 5(1), 21-40. http://doi.org/10.1021/acssuschemeng.6b00 841.
  25. Wadhwa S., Madaan J., Chan F.T.S., 2009. Flexible decision modeling of reverse logistics system: A value adding MCDM approach for alternative selection, Robotics and Computer-Integrated Manufacturing, 25(2), 460-469. http://doi.org/10.1016/j.rcim.2008.01.006.
  26. Wang Z., Ren J., Goodsite M.E., Xu G., 2018. Waste-to-energy, municipal solid waste treatment, and best available technology: comprehensive evaluation by an intervalvalued fuzzy multi-criteria decision making method, Journal of Cleaner Production, 172, 887-899. http://doi.org/10.1016/j.jclepro.2017.10.184
  27. Yadav O.P., Singh N., Goel P.S., ItabashiCampbell R., 2003. A framework for reliability prediction during product development process incorporating engineering judgements. Quality Engineering, 15(4), 649-662. http://doi.org/10.1081/QEN-120018396.
  28. Yu H., Solvang W.D., 2016. A stochastic programming approach with improved multi-criteria scenario-based solution method for sustainable reverse logistics design of waste electrical and electronic equipment (WEEE), Sustainability, 8(12), 1-28. http://doi.org/10.3390/su8121331.
  29. Zadeh L.A., 1975. The concept of linguistic variable and its application to approximate reasoning, Information Sciences, 8, 199249. http://doi.org/10.1016/00200255(75)90036-5.
  30. Zhao Y., Cao Y., Li H., Wang S., Liu Y., Li Y., Zhang Y., 2018. Bullwhip effect mitigation of green supply chain optimization in electronics industry, Journal of Cleaner Production, 180, 888-912. http://doi.org/10.1016/j.jclepro.2018.01.134
Cytowane przez
Pokaż
ISSN
1895-2038
Język
eng
URI / DOI
http://dx.doi.org/10.17270/J.LOG.2020.386
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu