BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Dobrucka Renata (Poznań University of Economics, Poland)
Tytuł
Metal Nanoparticles in Nanosensors for Food Quality Assurance
Nanocząstki metali w nanosensorach zapewniających jakość żywności
Źródło
LogForum, 2020, vol. 16, nr 2, s. 271-278, bibliogr. 43 poz.
Słowa kluczowe
Nanotechnologia, Bezpieczna żywność, Przemysł spożywczy, Jakość żywności
Nanotechnology, Safe food, Food industry, Food quality
Uwagi
summ., streszcz.
Abstrakt
Wstęp: Nanotechnologia jest stosowana w przemyśle spożywczym w celu zapewnienia bezpieczeństwa żywności i jest wykorzystywana zarówno w przetwórstwie żywności, jak i wykrywaniu zanieczyszczeń. Zapewnienie jakości i bezpieczeństwa żywności jest ważną kwestią w łańcuchu dostaw żywności. Aby chronić konsumentów przed skażeniem, zafałszowaniem i psuciem, absolutnie konieczne jest przeprowadzenie oceny jakości żywności, ze względu na narażenie na substancje, które mogą być szkodliwe dla ludzi i środowiska. Metody: W pracy przedstawiono przegląd literatury dotyczącej nanosensorów zawierających nanocząstki metali, które służą do wykrywania obecności zanieczyszczeń chemicznych, patogenów i toksyn, a także do monitorowania stanu jakości żywności. Takie rozwiązania niewątpliwie przyczynią się do utrzymania bezpieczeństwa i jakości żywności. Wyniki i podsumowanie: Obecnie łańcuchy dostaw żywności stają się coraz bardziej złożone, ograniczenia środowiskowe stają się coraz surowsze, a konsumenci zmieniają sposób, w jaki wybierają i spożywają żywność. Wszystkie te czynniki powodują zainteresowanie i coraz większą dbałość o jakość i bezpieczeństwo żywności. Zastosowanie nanocząstek w przemyśle spożywczym daje szerokie perspektywy, w związku z tym uzasadnione są dalsze badania w tym obszarze. Wraz z rozwojem badań i rozwoju nanotechnologii będą również rosnąć możliwości, jakie przemysł spożywczy może czerpać z nanonauki. (abstrakt oryginalny)

Background: Nanotechnology is applied in the food industry to ensure food safety, and it is used both in the processing of food and detection of contaminants. The assurance of quality and safety of food has become an important issue for authorities and food supply chain actors. In order to protect consumers from contamination, adulteration and spoilage, it is absolutely necessary to conduct analyses of food, as it is exposed to numerous chemical substances, which may be harmful to human beings and the environment. Methods: This work presents an overview of the literature concerning nanosensors with metal nanoparticles, which are used to detect the presence of chemical contaminants, pathogens and toxins, as well as to monitor food quality status. Such solutions will undoubtedly contribute to maintaining the safety and quality of food. Results and conclusion: At present, food supply chains are becoming more complex, environmental constraints are becoming stricter, and consumers are changing the way in which they select and consume food, and all those factors inspire modern societies to be more concerned about the harmful substances that could be present in food products. Application of nanoparticles in the food production industry are farreaching and more research in this space is warranted. As developments in the research and development of nanotechnologies continue, so will the opportunities for the food industry to benefit from nanoscience. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Abdullah A.H., Adom A.H., Ahmad M.N., Saad M.A., Tan E.S., Fikri N.A., Zakaria A. 2011. Electronic nose system for Ganoderma detection. Sensor Letters, 9[1], 353-358. http://doi.org/10.1166/sl.2011.1479
  2. Ai K., Liu Y., Lu L., 2009. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. Journal of the American Chemical Society, 131[27], 9496-9497. http://doi.org/10.1021/ja9037017
  3. Albelda J.A., Uzunoglu A., Santos G.N.C., Stanciu L.A., 2017. Graphene-titanium dioxide nanocomposite based hypoxanthine sensor for assessment of meat freshness. Biosensors and Bioelectronics, 89, 518-524. http:ZZdoi.org/1G.1G16Zi.bios.2016.03.041
  4. Aung M.M., Chang Y.S., 2014. Temperature management for the quality assurance of a perishable food supply chain. Food Control, 40, 198-207. http://doi.org/10.1016/j.foodcont.2013.11.016
  5. Bi J., 2019. Electrodeposited silver nanoflowers as sensitive surface-enhanced Raman scattering sensing substrates. Materials Letters, 236, 398-402. http://doi.org/10.1016/j.matlet.2018.10.138
  6. Chassy B., Hlywka J.J., Kleter G.A., Kok E.J., Kuiper H.A., McGloughlin M., 2004. Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: an executive summary. Comprehensive reviews in food science and food safety, 3[2], 38-104.
  7. Chen Z., Lin Y., Ma X., Guo L., Qiu B., Chen G., Lin Z., 2017. Multicolor biosensor for fish freshness assessment with the naked eye. Sensors and Actuators B: Chemical, 252, 201-208. http://doi.org/10.1016/j.snb.2017.06.007
  8. Chudobova D., Cihalova K., Skalickova S., Zitka J., Rodrigo M.A., Milosavljevic V., Hynek D., Kopel P., Vesely R., Adam V., Kizek R., 2015. Electrophoresis [36], 457466. http://doi.org/10.1002/elps.201400321
  9. Devi R., Yadav S., Pundir C.S., 2012. Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst, 137 [3], 754 -759. http://doi.org/10.1039/C1AN15838D
  10. Devi R., Batra B., Lata S., Yadav S., Pundir C. S., 2013. A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochemistry, 48 [2], 242-249. http://doi.org/10.1016/j.procbio.2012.12.00 9
  11. Dridi F., Marrakchi M., Gargouri M., Garcia-Cruz A., Dzyadevych S., Vocanson F., Lagarde F., 2015. Thermolysin entrapped in a gold nanoparticles/polymer composite for direct and sensitive conductometric biosensing of ochratoxin A in olive oil. Sensors and Actuators B: Chemical, 221, 480-490. http://doi.org/10.1016/j.snb.2015.06.120
  12. Dwiecki K., Nogala-Kalucka M., Polewski K., 2014. Application of quantum dots for the determination of ingredients and food contaminants. Food Science Technology Quality, 21[3].
  13. Dungchai W., Siangproh W., Chaicumpa W., Tongtawe P., Chailapakul O., 2008. Salmonella typhi determination using voltammetric amplification of nanoparticles: a highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta, 77[2], 727-732. http://doi.org/10.1016/j.talanta.2008.07.014
  14. Galian R.E., de la Guardia M., 2009. The use of quantum dots in organic chemistry. TrAC Trends in Analytical Chemistry, 28[3], 279-291. http://doi.org/10.1016/j.trac.2008.12.001
  15. Gao M.X., Liu C.F., Wu Z.L., Zeng Q.L., Yang X.X., Wu W.B., Huang C.Z., 2013. A surfactant-assisted redox hydrothermal route to prepare highly photoluminescent carbon quantum dots with aggregation-induced emission enhancement properties. Chemical Communications, 49[73], 80158017. http://doi.org/10.1039/C3CC44624G
  16. Ghasemi-Varnamkhasti M., Mohtasebi S.S., Rodriguez-Mendez M.L., Siadat M., Ahmadi H., Razavi S.H., 2011. Electronic and bioelectronic tongues, two promising analytical tools for the quality evaluation of non alcoholic beer. Trends in Food Science & Technology, 22[5], 245-248. http:ZZdoi.org/1G.1016Zi.tifs.2011.01.003
  17. Gracias K.S., McKillip J.L., 2004. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian journal of microbiology, 50[11], 883-890. http:ZZdoi.orgZ10.1139Zw04-080
  18. Joo J., Yim C., Kwon D., Lee J., Shin H.H., Cha H.J., Jeon S., 2012. A facile and sensitive detection of pathogenic bacteria using magnetic nanoparticles and optical nanocrystal probes. Analyst, 137[16], 36093612. http:ZZdoi.orgZ10.1039ZC2AN35369E
  19. Kalele S.A., Kundu A.A., Gosavi S.W., Deobagkar D.N., Deobagkar D.D., Kulkarni S.K., 2006. Rapid detection of Escherichia coli by using antibody-conjugated silver nanoshells. Small, 2[3], 335-338. http:ZZdoi.orgZ10.1002Zsmll.200500286
  20. Kelsall R.W., Hamley I.W., Geoghegan M., 2009. Nanotechnology. PWN, Warszawa 2009,5.
  21. King T., Osmond-McLeod M.J., Duffy L.L., 2018. Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science & Technology, 72, 62-73. http:ZZdoi.orgZ10.1016Zi.tifs.2017.11.015
  22. Kumar P., Kumar P., Manhas S., Navani N.K., 2016. A simple method for detection of anionic detergents in milk using unmodified gold nanoparticles. Sensors and Actuators B: Chemical, 233, 157-161. http:ZZdoi.orgZ10.1016Zi.snb.2016.04.066
  23. Kumar N., Seth R., Kumar H., 2014. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Analytical biochemistry, 456, 43-49. http:ZZdoi.orgZ10.1016Zi.ab.2014.04.002
  24. Krishna V.D., Wu K., Su D., Cheeran M.C., Wang J.P., Perez A., 2018. Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food microbiology, 75, 47-54. http:ZZdoi.orgZ10.1016Zi.fm.2018.01.025
  25. Kumar M., Jeong H., Lee D., 2018. UV photodetector with ZnO nanoflowers as an active layer and a network of Ag nanowires as transparent electrodes. Superlattices and Microstructures. http:ZZdoi.orgZ10.1016Zi.spmi.2018.12.004
  26. Leonard P., Hearty S., Brennan J., Dunne L., Quinn J., Chakraborty T., O'Kennedy R., 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 32[1], 3-13. http:ZZdoi.orgZ10.1016ZS0141- 0229(02)00232-6
  27. Liu S.F., Petty A.R., Sazama G.T., Swager T. M., 2015. Single-Walled carbon nanotubeZ metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. Angewandte Chemie International Edition, 54 [22], 6554-6557. http:ZZdoi.orgZ10.1002Zanie.201501434
  28. Rzeszutek J., Matysiak M., Czajka M., Sawicki K., Rachubik P., Kruszewski M., Kapka-Skrzypczak, L. [2014]. Application of nanoparticles and nanomaterials in medicine. Hygeia Public Health, 49[3], 449-457.
  29. Shim K., Kim J., Shahabuddin M., Yamauchi Y., Hossain M.S.A., Kim J.H., 2018. Efficient wide range electrochemical bisphenol-A sensor by self-supported dendritic platinum nanoparticles on screen-printed carbon electrode. Sensors and Actuators B: Chemical, 255, 2800-2808. http:ZZdoi.orgZ10.1016Zi.snb.2017.09.096
  30. Suwanboon S., Chukamnerd S., Anglong U., 2007. Morphological control and optical properties of nanocrystalline ZnO powder from precipitation method. Songklanakarin Journal of Science & Technology, 29 [6].
  31. Thomas M.K., Vriezen R., Farber J.M., Currie A., Schlech W., Fazil A., 2015. Economic cost of a Listeria monocytogenes outbreak in Canada, 2008. Foodborne Pathogens and Disease, 12[12], 966e971. http:ZZdoi.orgZ10.1089Zfpd.2015.1965.
  32. Zhang W.H., Zhang W.D., 2008. Fabrication of SnO2-ZnO nanocomposite sensor for selective sensing of trimethylamine and the freshness of fishes. Sensors and Actuators B: Chemical, 134[2], 403-408. http://doi.org/10.1016/j.snb.2008.05.015
  33. Zhang Q., Zhang S., Xie C., Zeng D., Fan C., Li D., Bai Z., 2006. Characterization of Chinese vinegars by electronic nose. Sensors and Actuators B: Chemical, 119[2], 538-546. http://doi.org/10.1016/S0925-4005(98)00160-9
  34. Zhao X., et al., 2014. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24 [3], 297e312. http://doi.org/10.4014/jmb.1310.10013
  35. Zhang H., Ming H., Lian S., Huang H., Li H., Zhang L., Lee S.T., 2011. Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Transactions, 40[41], 10822-10825. http://doi.org/10.1039/C1DT11147G
  36. Zheng D., Hu C., Gan T., Dang X., Hu S., 2010. Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B: Chemical, 148[1], 247-252.
  37. Zheng L., Zhang C., Ma J., Hong S., She Y., EI-Aty A.A., Wang J., 2018. Fabrication of a highly sensitive electrochemical sensor based on electropolymerized molecularly imprinted polymer hybrid nanocomposites for the determination of 4-no-nylphenol in packaged milk samples. Analytical biochemistry, 559, 44-50.
  38. Yang M., Kostov Y., Bruck H.A., Rasooly A., 2009. Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B [SEB] in food. International journal of food microbiology, 133[3], 265-271. http://doi.org/10.1016/j.ijfoodmicro.2009.05.029
  39. Valdes M.G., Gonzalez A.C.V., Calzón J.A.G., Diaz-Garcia M.E., 2009. Analytical nanotechnology for food analysis. Microchimica Acta, 166[1-2], 1-19. http://doi.org/10.1007/s00604-009-0165-z
  40. Wang Y., Fewins P.A., Alocilja E.C., 2015. IEEE Sensor. J. [15] 2015, 4692-4699.
  41. WHO, 2015. WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007-2015.
  42. Wu Q., Long Q., Li H., Zhang Y., Yao S., 2015. An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk. Talanta, 136, 47-53. http://doi.org/10.1016/j.talanta.2015.01.005
  43. Yuan J., Tao Z., Yu Y., Ma X., Xia Y., Wang L., Wang Z., Food Control [37]. 2014. 188-192. http://doi.org/10.1016/j.foodcont.2013.09.0
Cytowane przez
Pokaż
ISSN
1895-2038
Język
eng
URI / DOI
http://dx.doi.org/10.17270/J.LOG.2020.390
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu