BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Respondek Zbigniew (Czestochowa University of Technology)
Influence of Pressure Equalisation Elements on the Quality of Insulating Glass Units
Multidisciplinary Aspects of Production Engineering, 2018, vol. 1, s. 47-53, rys., tab., bibliogr. 18 poz.
Słowa kluczowe
Materiałoznawstwo, Jakość produktów budowlanych, Wyroby szklane
Materials science, Quality of construction products, Glassware products
streszcz., summ.
Continuous increase of expectations concerning improvement in quality of building partitions by means of increasing their thermal insulation properties brings, among others, a need of modification in standards that have been applied to the double glazed windows so far. Triple-glazed and quadrupleglazed IGUs are used more and more often. Such elements have better thermal properties, but they are more prone to deflection and stress resulting from climatic load, i.e. changes in temperature, atmospheric pressure and wind load. Due to the above certain concepts occurred that consist in equalising gas pressure in the gas-filled gaps with the atmospheric pressure. The article contains assessment of such solutions in the context of providing suitable technical parameters of glass panes: thermal insulation and susceptibility to climatic load. It was stated that the pressure-equalizing elements (capillaries) can result in a significant reduction in the quality of the glass partition in the event of the argon purging chamber or damage to the low-E emissions. The lower risk of using required thermal properties occurs when periodically active valves are used, they operate only in case of extreme pressure level differences. Further analysis concerned the idea of pressure equalisation between the gaps of a triple-glazed unit, as that can be done by using an edge spacer of appropriate design. On the basis of comparative analysis of static values it was shown that it is a reasonable solution. Such a unit maintains the properties of a tight unit, while the possibility of gas exchange between the gaps leads to relief of the central glass pane in the unit, thus allowing for decreasing its thickness to 2 mm. (original abstract)
Pełny tekst
  1. Feldmeier, F. (2006). Klimabelastung und Lastverteilung bei Mehrscheiben-Isolierglas. Stahlbau, 6(75), pp. 467-478.
  2. Hardtke, R. (2016). Die Zukunft von Qualitäts - Isolierglas ist multifunktional. BAUflash, 1-2, pp. 14-16.
  3. Jakubowski A., Crasto R. (2016). The structure analytical research of porous permeable wire material, Management Systems in Production Engineering, 2(22), pp. 81-88.
  4. Jura, J. (2016). Rozwój technologii i konstrukcji okien zewnętrznych. Construction of Optimized Energy Potential, 1(17), pp. 27-32.
  5. Kaźmierczak J. (2013). Production engineering in Poland: a point of view. Management Systems in Production Engineering, 1(9), pp. 5-7.
  6. Ligarski M.J. (2017). Production engineering as a discipline and the possibilities to apply the organization of its achievements in practice. Systemy Wspomagania w Inżynierii Produkcji, vol. 6, iss. 4, pp. 11-18.
  7. PN-EN 673:2011 Glass in building - Determination of thermal transmittance (U value) - Calculation method
  8. Repelewicz, A. (2014). Izolacyjność termiczna okien w obiektach sakralnych. Construction of Optimized Energy Potential, 2(14), pp. 90-95.
  9. Respondek, Z. (2016). Rozkład obciążeń środowiskowych w wielokomorowej szybie zespolonej. Construction of Optimized Energy Potential, 1(19), pp. 105-110.
  10. Rose, A. (2017). Zmiana ciśnienia wewnątrz szyb zespolonych (IGU). Wyniki badań, praktyczna realizacja i perspektywy. Świat Szkła, 1.
  11. Sack, N. and Rose A. (2014). Untersuchungen zur Umsetzbarkeit von druckentspanntem Mehrscheiben- Isolierglas. Istitut für Fenstertechnik Rosenheim. [online] Available at: https://www.iftrosenheim. de/documents/10180/671018/FA_GR1406.pdf/2d0f2a7b-4c25-4133-900f-48953b6bfdad [Accessed 17 Mar. 2018].
  12. Sitko J., Michalski K. (2015). An analysis of factors influencing the innovation of products manufactures at Ponar Wadowice S.A., Management Systems in Production Engineering, 4(20), pp. 230-232.
  13. Swissspacer (2018). [online] Available at: [Accessed 29 Mar. 2018].
  14. Sygut P. (2013). Process of quality improvement in the company producing building materials, Production Engineering Archives, 1/1, pp. 16-18.
  15. Timoszenko, S. and Woinowsky-Krieger, S. (1962): Teoria płyt i powłok. Warszawa: Arkady, 1962.
  16. Van Den Bergh S., Hart R., Jelle B.P. and Gustavsen A. (2013). Window spacers and edge seals in insulating glass units: A state-of-the-art review and future perspectives, Energy and Buildings, 58, pp. 263-280.
  17. Vetrotech Saint-Gobain AG (2016) Prosty sposób na wyrównanie ciśnienia w szybie zespolonej. Świat Szkła, nr 2.
  18. Wirpsza, Z. (2010). Masy uszczelniające do szyb zespolonych. Świat Szkła, 4, pp. 30-35.
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu