- Autor
- Krzciuk Małgorzata K. (University of Economics in Katowice, Poland)
- Tytuł
- On Empirical Best Linear Unbiased Predictor under s Linear Mixed Model with Correlated Random Effects
O empirycznym najlepszym liniowym nieobciążonym predyktorze dla pewnego modelu mieszanego - Źródło
- Econometrics. Advances in Applied Data Analysis, 2020, vol. 24, nr 2, s. 17-29, rys., tab., bibliogr. 19 poz.
Ekonometria - Słowa kluczowe
- Ekonometria, Statystyka małych obszarów, Symulacja
Econometrics, Small area estimates, Simulation - Uwagi
- Klasyfikacja JEL: C15, C51, C53
This paper was presented at the conference MSA 2019 which financed its publication. The organization of the international conference "Multivariate Statistical Analysis 2019" (MSA 2019) was supported from resources for the popularization of scientific activities from the Minister of Science and Higher Education in the framework of agreement No 712/P-DUN/202019.
streszcz., summ. - Abstrakt
- Zagadnieniem poruszanym w artykule jest problem predykcji w przypadku pewnego modelu należącego do klasy liniowych modeli mieszanych. W opracowaniu została przedstawiona propozycja empirycznego najlepszego liniowego nieobciążonego predyktora dla liniowego modelu mieszanego z dwoma skorelowanymi efektami losowymi. Głównym celem opracowania jest symulacyjne zbadanie wpływu występowania zależności między efektami losowymi na własności rozważanego predyktora. W artykule podjęto również problem estymacji błędu średniokwadratowego zaproponowanego predyktora. Badanie symulacyjne oraz przykład przygotowano z użyciem programu R.(abstrakt oryginalny)
The problem of small area prediction is considered under a Linear Mixed Model. The article presents a proposal of an empirical best linear unbiased predictor under a model with two correlated random effects. The main aim of the simulation analyses is a study of an influence of the occurrence of a correlation between random effects on properties of the predictor. In the article, an increase of the accuracy due to the correlation between random effects and an influence of model misspecification in cases of the lack of correlation between random effects are analyzed. The problem of the estimation of the Mean Squared Error of the proposed predictor is also considered. The Monte Carlo simulation analyses and the application were prepared in R language.(original abstract) - Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu - Pełny tekst
- Pokaż
- Bibliografia
- Battese, G. E., Harter, R. M., and Fuller, W. A. (1988). An error-components model for prediction of count crop area using survey satellite data. Journal of the American Statistical Association, 83(401), 28-36.
- Biecek, P. (2012). Analiza danych z programem R. Modele liniowe z efektami stałymi i losowymi i mieszanymi. Warszawa: Wydawnictwo Naukowe PWN.
- Butar, F. B., and Lahiri, P. (2003). On measures of uncertainty of empirical Bayes small-area estimators. Journal of Statistical Planning and Inference, 112(1-2), 635-676.
- Chatterjee, S., Lahiri, P., and Li, H. (2008). Parametric bootstrap approximation to the distribution of EBLUP and related prediction intervals in linear mixed models. The Annals of Statistics, 36(2), 1221-1245.
- Datta, G. S., and Lahiri, P. (2000). A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems. Statistica Sinica, (10), 613-627.
- Dempster, A. P., Rubin, D. B., and Tsutakawa, R. K. (1981). Estimation in covariance components models. Journal of the American Statistical Association, 76(374), 341-353.
- Dumont, C., Chenel, M., and Mentre, F. (2014). Influence of covariance between random effects in design for nonlinear mixed-effect models with an illustration in pediatric pharmacokinetics. Journal of Biopharmaceutical Statistics, 24(3), 471-492.
- Gonzales-Manteiga, W., et. al. (2008). Bootstrap mean squared error of a small-area EBLUP. Journal of Statistical Computation and Simulation, (78), 443-462.
- Jiang, J. (2007), Linear and Generalized Linear Mixed Models and their applications. New York: Springer Science+Business Media.
- Kackar, R. N., and Harville, D. A. (1994). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, (79), 853-862.
- Krzciuk, M., and Żądło, T. (2014a). On some tests of variance components for linear mixed models. Studia Ekonomiczne - Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, (189), 77-85.
- Krzciuk, M., and Żądło, T. (2014b). On some tests of fixed effects for linear mixed models. Studia Ekonomiczne - Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, (189), 49-57.
- Menec, V., et. al. (2004). Patterns of health care use and cost at the end of life. Winnipeg: MB: Manitoba Centre for Health Policy.
- Ogungbenro, K., et. al. (2008). Incorporating correlation in interindividual variability for the optimal design of multiresponse pharmacokinetic experiments. Journal of Biopharmaceutical Statistics, 18(2), 342-358.
- Rao, J. N. K., and Molina, I. (2015). Small area estimation. Hoboken, New Jersey: John Wiley and Sons.
- Royall, R. M. (1976). The linear least-squares prediction approach to two-stage sampling. Journal of the American Statistical Association, 71(355), 657-664.
- Särndal, C. E., Swensson, B., and Wretman, J. (1992). Model assisted survey sampling. New York: Springer Verlag.
- Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in Statistics - Simulation and Computation, 22(4), 1079-1106.
- Żądło, T. (2017), On prediction of population and subpopulation characteristics for future periods. Communications in Statistics - Simulation and Computation, 46(10), 8086-8104.
- Cytowane przez
- ISSN
- 1507-3866
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.15611/eada.2020.2.02