BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Zeghdoudi Halim (Badji-Mokhtar University, Algeria), Nouara Lazri (Badji-Mokhtar University, Algeria), Yahia Djabrane (Mohamed Khider University, Algeria)
Tytuł
Lindley Pareto Distribution
Źródło
Statistics in Transition, 2018, vol. 19, nr 4, s. 671-692, rys., tab., aneks, bibliogr. s. 687-689
Słowa kluczowe
Rozkład prawdopodobieństwa, Rozkład Pareta, Rachunek prawdopodobieństwa, Statystyka matematyczna
Probability distributions, Pareto distribution, Calculus of probability, Mathematical statistics
Uwagi
summ.
Abstrakt
In this paper, we introduce a new Lindley Pareto distribution, which offers a more flexible model for modelling lifetime data. Some of its mathematical properties like density function, cumulative distribution, mode, mean, variance, and Shannon entropy are established. A simulation study is carried out to examine the bias and mean square error of the maximum likelihood estimators of the unknown parameters. Three real data sets are fitted to illustrate the importance and the flexibility of the proposed distribution. (original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka SGH im. Profesora Andrzeja Grodka
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. ABOUELMAGD, T. H. M, AL-MUALIM, S., AFIFY, A.Z. AHMAD, M., ALMOFLEH, H., (2018). The odd Lindley Burr XII distribution with applications. Pak. J. Statist. 34(1), pp. 15-32.
  2. AKINSETE, A., FAMOYE, F., LEE, C., (2008). The beta-Pareto distribution, Statistics, 42, pp. 547-563.
  3. ALZAATREH, A., LEE, C., FAMOYE, F., (2013a). A new method for generating families of continuous distributions. Metron. 71(1), pp. 63-79.
  4. ARLOND, B. C., BALAKRISHNAN, N., (1989). Relations, bounds and approximations for order statistics. Lecture Notes in Statistics Vol. 53, Springer-Verlag, New York.
  5. ASGHARZADEH, A., BAKOUCH, H. S., ESMAEILI, L., (2013). Pareto Poisson-Lindley distribution with applications. J. of Applied Statistics, 40(8), pp. 1717-1734.
  6. COORAY, K., (2006). Generalization of the Weibull Distribution: The Odd Weibull Family. Statistical Modelling, 6, pp. 265-277.
  7. GHITANY, M. E., AL-MUTAIRI, D. K., NADARAJAH S., (2008a). Zerotruncated Poisson-Lindley distribution and its application, Math. Comput. Simulation, 79, pp. 279-287.
  8. GHITANY, M. E., ATIEH, B. NADARAJAH, S., (2008b). Lindley distribution and its applications. Math. Comput. Simulation, 78, pp. 493-506.
  9. GOMES-SILVA, F.S., PERCONTINI, A., DE BRITO, E., RAMOS, M. W., VENÂNCIO, R., CORDEIRO, G. M., (2017). The odd Lindley-G family of distributions. Austrian Journal of Statistics, 46(1), pp. 65-87.
  10. LEE, E.T., WANG, J.W., (2003). Statistical Methods for Survival Data Analysis, 3rd edn. Wiley, Hoboken.
  11. LEHMANN, E.L., SCHEFFÉ, H., (1950). Completeness, similar regions, and unbiased estimation. Sankhy¯ a, 10, pp. 305-340.
  12. LINDLEY, D. V., (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Society, series B,20, pp. 102-107.
  13. MÄKELÄINEN, T., SCHMIDT, K., STYAN, G.P.H., (1981). On the existence and uniqueness of the maximum likelihood estimate of a vectorvalued parameter in fixed-size samples, The Annals of Statistics, 9(4), pp. 758-767.
  14. MAHMOUDI, E., (2011). The beta generalized Pareto distribution with application to lifetime data. Mathematics and Computers in Simulation, 81, pp. 2414-2430.
  15. PARETO, V., (1896). Essai sur la courbe de la répartition de la richesses. Faculté de droit à l'occasion de l'exposition nationale suisse, Genève, Université de Lausanne.
  16. PICKANDS, J., (1975) Statistical inference using extreme order statistics. Annals of Statistics, 3, pp. 119-131.
  17. RÉNYI, A., (1961). On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, I, University of California Press, Berkeley, pp. 547-561.
  18. SHANNON, C. E., (1948). A mathematical theory of communication. Bell System Technical Journal, 27, pp. 379-432.
  19. SANKARAN, M., (1970). The discrete Poisson-Lindley distribution. Biometrics, 26, pp. 145-149.
  20. SHARMA, M., SHANKER, R., (2013). A two-parameter Lindley distribution for modeling waiting and survival times data, Applied Mathematics, 4, 363-368.
  21. ZAKERZADAH, H. , DOLATI, A., (2010). Generalized Lindley distribution. J. Math. Ext, 3(2), pp. 13-25.
  22. ZEA, L.M., SILVA, R.B., BOURGUIGNON, M., SANTOS, A.M., CORDEIRO, G.M.,(2012). The beta exponentiated Pareto distribution with application to bladder cancer susceptibility. International Journal of Statistics and Probability, 1, pp. 8-19.
  23. ZEGHDOUDI, H., NEDJAR, S., (2016). Gamma Lindley distribution and its application. Journal of Applied Probability and Statistics. 11(1), pp. 129-138.
  24. ZEGHDOUDI, H., NEDJAR, S., (2016). On gamma Lindley distribution: Properties and Simulations. Journal of Computational and Applied Mathematics, 298, pp. 67-174.
  25. ZEGHDOUDI, H., LAZRI, N., (2016). On Lindley-Pareto Distribution: Properties and Application. Journal of Mathematics, Statistics and Operations Research (JMSOR), Vol. 3, No. 2.
Cytowane przez
Pokaż
ISSN
1234-7655
Język
eng
URI / DOI
http://dx.doi.org/10.21307/stattrans-2018-035
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu