- Autor
- Mazurek Jiri (Silesian University in Opava), Fernández García Carlos (Universidad Tecnica de Ambato, Quito, Ecuador), Pérez Rico Cristina (Escuela Politecnica Nacional, Quito, Ecuador)
- Tytuł
- Inequality and Students' PISA 2018 Performance : a Cross-Country Study
Nierówności a wyniki badania umiejętności uczniów PISA 2018 : porównanie międzykrajowe - Źródło
- Comparative Economic Research, 2021, vol. 24, nr 3, s. 163-183, rys., tab., bibliogr. 28 poz.
- Słowa kluczowe
- Edukacja, Nierówność płci, Współczynnik Giniego
Education, Gender inequality, Gini coefficient - Uwagi
- Klasyfikacja JEL: I20
summ., streszcz.
This paper was partly supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Institutional Support for Long-term Development of a Research Organization in 2021. - Abstrakt
- Celem tego artykułu było zbadanie związku między wynikami badania PISA przeprowadzonego w poszczególnych krajach w 2018 r. a zestawem wskaźników związanych z nierównościami społeczno-ekonomicznymi, takimi jak indeks Giniego, wskaźnik rozwoju społecznego czy wskaźnik nierówności płci, oraz ze zmiennymi czysto ekonomicznymi, takimi jak PKB per capita i wydatki rządowe na edukację. Badaniem objęto 70 krajów, w tym 37 krajów OECD i 33 kraje spoza OECD. Metody badawcze obejmowały wielowymiarowe modele regresji liniowej, grupowanie k-średnich i grupowanie hierarchiczne. Wyniki przeprowadzonej analizy wykazały, że wskaźnik Giniego był statystycznie nieistotny, co wskazuje, że nierówności dochodowe miały niewielki wpływ na wyniki uczniów w badaniu PISA. Z drugiej strony, wskaźnik nierówności płci był jedyną najbardziej istotną statystycznie zmienną objaśniającą zarówno dla krajów OECD, jak i spoza OECD. Dlatego nasza rekomendacja dla decydentów jest prosta: należy zwiększyć wyniki uczniów w badaniu PISA, a tym samym osiągnąć poprawę w obszarze kapitału ludzkiego i konkurencyjności krajów, oraz skupić się na zmniejszaniu nierówności płci i związanej z tym utraty osiągnięć edukacyjnych wynikających z nierówności płci. (abstrakt oryginalny)
The aim of this paper was to investigate the relationship between countries' PISA study results from 2018 and a set of indices related to socio-economic inequality, such as the Gini index, human development index, or gender inequality index, along with purely economic variables, such as GDP per capita and government expenditure on education. The study covered 70 countries, consisting of 37 OECD countries and 33 non-OECD countries. Research methods included multivariate linear regression models, k-means clustering, and hierarchical clustering. Our findings revealed that the Gini index was statistically insignificant, indicating income inequality had little effect on students' PISA performance. On the other hand, the gender inequality index was the single most statistically significant explanatory variable for both OECD and non-OECD countries. Therefore, our recommendation for policymakers is simple: increase students' PISA performance, thus enhancing countries' human capital and competitiveness, and focus on decreasing gender disparity and the associated loss of achievement due to gender inequality. (original abstract) - Dostępne w
- Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
- Pełny tekst
- Pokaż
- Bibliografia
- Afonso, A., Aubyn, M.S. (2005), Non-parametric Approaches to Education and Health Expenditure Efficiency in the OECD, "Journal of Applied Economics", 8 (2), pp. 227-246, https://doi.org/10.1080/15140326.2005.12040626
- Afonso, A., Aubyn, M.S. (2006), Cross-country efficiency of secondary education provision: a semi-parametric analysis with non-discretionary inputs, "Economic Modeling", 23 (3), pp. 476-491, https://doi.org/10.1016/j.econmod.2006.02.003
- Agasisti, T. (2014), The Efficiency of Public Spending on Education: an empirical comparison of EU countries, "European Journal of Education", 49 (4), pp. 543-557, https://doi.org/10.1111/ejed.12069
- Aristovnik, A., Obadic, A. (2014), Measuring relative efficiency of secondary education in selected EU and OECD countries: the case of Slovenia and Croatia, "Technological and Economic Development of Economy", 20 (3), pp. 419-433, https://doi.org/10.3846/20294913.2014.880085
- Aubyn, M.S., Pina, Á., Garcia, F., Pais, J. (2009), Study on the efficiency and effectiveness of public spending on tertiary education, "Economics Papers", No. 390, European Committee, Brussels, https://doi.org/10.2765/30348
- Clements, B. (2002), How efficient is education spending in Europe?, "European Review of Economics and Finance", 1 (1), pp. 3-26.
- DiCorrado, E., Kelly, K., Wright, M. (2015), The Relationship Between Mathematical Performance and GDP per Capita, https://smartech.gatech.edu/bitstream/handle/1853/54222/the_relationship_between_mathematical_performance_and_gdp_per_capita_1.bk-2.pdf (accessed: 10.02.2020).
- Duru-Bellat, M., Suchaut, B. (2005), Organisation and Context, Efficiency and Equity of Educational Systems: What PISA Tells Us, "European Educational Research Journal", 4 (3), pp. 181-194, https://doi.org/10.2304/eerj.2005.4.3.3
- Flores, I. (2017), Modelling efficiency in education: how are European countries spending their budgets and what relation between money and performance, "Sociologia, Problemas e Práticas", 83, pp. 157-170, https://doi.org/10.7458/SPP2017836496
- French, J.J., French, A., Li, W.-X. (2015), The relationship among cultural dimensions, education expenditure, and PISA performance, "International Journal of Educational Development", 42, pp. 25-34, https://doi.org/10.1016/j.ijedudev.2015.02.010
- Gini, C. (1921), Measurement of Inequality of Incomes, "The Economic Journal", 31 (121), pp. 124-126, https://doi.org/10.2307/2223319
- Hanushek, E.A. (1986), The economics of schooling: production and efficiency in the public schools, "Journal of Economic Literature", 24 (3), pp. 1141-1178.
- Hanushek, E.A., Woessmann, L. (2011), The economics of international differences in educational achievement, [in:] E.A. Hanushek, S. Machin, L. Woessmann (eds.), Handbook of the Economics of Education, 3, North Holland, Amsterdam, pp. 89-200, https://doi.org/10.1016/B978-0-444-53429-3.00002-8
- Kennedy, P. (2003), A Guide to Econometrics, 5th edition, MIT Press, Cambridge.
- Lockheed, M., Hanushek, E.A. (1994), Concepts of educational efficiency and effectiveness, "Human Resources Development and Operations Policy Working Papers", No. HRO 24, World Bank, Washington.
- MacKay, D. (2003), An Example Inference Task: Clustering, [in:] D. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, Cambridge, pp. 284-292.
- Mazurek, J., Mielcová, E. (2019), On the relationship between selected socio-economic indicators and student performances in the PISA 2015 study, "E+M", 22 (2), pp. 22-39, https://doi.org/10.15240/tul/001/2019-2-002
- Miningou, E.W. (2019), Quality Education and the Efficiency of Public Expenditure: A Cross-Country Comparative Analysis, "Policy Research Working Paper", 9077, pp. 1-22, https://doi.org/10.1596/1813-9450-9077
- Nicoletti, C., Rabe, B. (2012), The effect of school resources on test scores in England, "Research Paper: Institute for Economic and Social Research", https://www.iser.essex.ac.uk/publications/working-papers/iser/2012-13.pdf (accessed: 19.12.2019).
- Nielsen, F. (2016), Hierarchical Clustering, [in:] F. Nielsen, Introduction to HPC with MPI for Data Science, Springer, Cham, pp. 195-211.
- O'Brien, R.M. (2007), A Caution Regarding Rules of Thumb for Variance Inflation Factors, "Quality and Quantity", 41, pp. 673-690, https://doi.org/10.1007/s11135-006-9018-6
- OECD (2019), PISA 2018 Results. Combined executive summaries. Volume I , II & III, https://www.oecd.org/pisa/Combined_Executive_Summaries_PISA_2018.pdf (accessed: 12.02.2020).
- Rosling, H., Rosling Ronnlund, A., Rosling, O. (2018), Factfulness: Reasons We're Wrong About the World - and Why Things Are Better Than You Think, Flatiron Books, New York.
- United Nations Development Programme (2013), Technical notes, http://hdr.undp.org/sites/default/files/hdr_2013_en_technotes.pdf (accessed: 10.02.2020).
- United Nations Development Programme (2020), http://hdr.undp.org/en/2020-report(accessed: 10.02.2020).
- Wolff, E.N. (2015), Educational expenditures and student performance among OECD countries, "Structural Change and Economic Dynamics", 33, pp. 37-57, https://doi.org/10.1016/j.strueco.2015.02.003
- World Bank (2020), World Bank Open Data, https://data.worldbank.org/ (accessed: 11.02.2020).
- Yorulmaz, Y.I., Colak, I., Ekinci, C.E. (2017), An evaluation of PISA 2015 achievements of OECD countries within income distribution and education expenditures, "Turkish Journal of Education", 6 (4), pp. 169-185, https://doi.org/10.19128/turje.329755
- Cytowane przez
- ISSN
- 1508-2008
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.18778/1508-2008.24.27