BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Freund Lucas (University of Lincoln, United Kingdom), Al-Majeed Salah (University of Lincoln, United Kingdom)
Managing Industry 4.0 Integration - the Industry 4.0 Knowledge & Technology Framework
LogForum, 2021, vol. 17, nr 4, s. 569-586, rys., tab., bibliogr. 30 poz.
Słowa kluczowe
Przemysł 4.0, Inteligentne fabryki, Cyberprzestrzeń, Zarządzanie zintegrowane, Postęp technologiczny
Industry 4.0, Smart factories, Cyberspace, Integrated management, Technological progress
Background: This paper has the aim to address the key area of managing complex Industry 4.0 production systems to support a successful adoption and integration of Industry 4.0. This is achieved by approaching methodological research challenges of Industry 4.0 in the form of lacking reference models and the need to establish common definitions of fundamental concepts. The general underlying challenge this paper aims to contribute to solve can therefore be defined as how the technological advances, like CPS, IoT, Big Data or CC can be best linked with each other on different levels of perspective and how they can be used by decision-makers to generate economic value and to improve existing processes. This is achieved through the introduction of the Industry 4.0 Knowledge & Technology Framework (IKTF). Methods: The Industry 4.0 Knowledge Framework (IKTF) is based on the concept of the micro-meso-macro analysis framework and consequently is representative for the approach of micro-meso-macro analysis in managerial practice. It proposes three categories of factors and places them in three basic levels layering them on top of each other. The macrolevel includes the financial, political and sociocultural factors that influence Industry 4.0. The meso-level includes the technical and organizational factors. The micro-level refers to individual factors, particularly individual companies' intention to use Industry 4.0 in practical economic contexts. Results: The Industry 4.0 Knowledge & Technology Framework (IKTF) provides guidance to corporate decision makers by providing a comprehensive, multi-level sequential integration framework for Industry 4.0 based on a sequential micro, meso and macro perspective analysis of the individual corporate context. The aim of the IKTF is to support an informed and successful managerial decision-making process and therefore enable the integration of Industry 4.0 in a corporate context. Conclusion: As a first step, the structure, and contents of the IKTF are sequentially introduced and described. In a second and final step the functionality and applicability of the IKTF are demonstrated and discussed on a theoretical and practical level with the help of a case study. (original abstract)
Pełny tekst
  1. Autodesk.,2021. website:
  2. Camarinha-Matos L., Fornasiero R., Asfarma- nesh H., 2017. Collaborative Networks as a Core Enabler of Industry 4.0, Collaboration in a Data-Rich World, Springer, PRO-VE 2017. IFIP Advances in Information and Communication Technology, 506: 3-17, 4 1
  3. Congressional Research Service, 2020. Global Economic Effects of COVID-19. World Economic Outlook. International Monetary Fund. April 2020.
  4. Dopfer K., Foster J., Potts J., 2004. micro- meso-macro. Journal of Evolutionary Economics, 14(3):263-279,
  5. Fraunhofer IPT. 2019., INDUSTRIE 4.0 - Vernetzte, Adaptive Produktion. Frauen- hofer Institut fur Produktionstechnologie: 3-7.
  6. Freund L., Al-Majeed S., 2020. The Industry 4.0 Knowledge & Technology Framework. PalArch's Journal of Archaeology of Egypt / Egyptology, 17(9), 6321 - 6339, ISSN 1567-214x
  7. Freund L., Al-Majeed S., 2020. Cyber-physical systems as sources of dynamic complexity in cyber-physical systems of systems. 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), Sakheer, Bahrain, 2020, 1-5, 2015
  8. Freund L., Al-Majeed S., 2021., Hypotheses concerning complexity surges in modern and future industrial information systems . Logforum 17 (3), 1.
  9. Freund L., Al-Majeed S., Millard A., 2021. Case Studies Key-Findings of a Strategic Complexity Management Framework for Industrial Manufacturing Systems. 2021 16th International Conference of System of Systems Engineering (SoSE), 2021, 55-60, 97489.
  10. Gaham M., Bouzouia B., Achour N., 2013. Human-in-the-Loop Cyber-Physical Production Systems [Control HiLCP2sC) A Multi-objective interactive framework Proposal. in: Service Orientation in Holonic and Multi-agent Manufacturing, Springer- Verlag Berlin Heidelberg: 315-325, 5 29
  11. Gimpel H., Roglinger M., 2015. Digital transformation: changes and chances. Project Group Business and Information Systems Engineering (BISE) of the Fraunhofer Institute for Applied Information Technology FIT: 1-20
  12. Hochwallner M., Ribeiro L., 2018. On the Design Complexity of Cyberphysical Production Systems. Complexity, Vol.18,
  13. Horvarth I., Gerritsen B., 2012. Cyber physical systems: concepts, technologies and implementations. Proceedings of TMCE 2012, 1:19-22, ISBN 978-90-5155-082-5
  14. Lee J., Bagheri B., 2015. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters 2015 3:18-23,
  15. McAfee A., Brynjolfsson E., 2014. The second machine age. W.W. Norton & Company, New York: 26-34, ISBN: 978-0-393-350647
  16. Mittal S., Khan M., Romero D., Wuest T., 2019. Smart Manufacturing: Characte- ristics, Technologies and Enabling Factors. Proceedings of the Institution of Mechanical Engineers 2017 Part B Journal of Engineering Manufacture, 233(5): 13421361,
  17. Morrar R., Arman H., Moussa S., 2017. The Fourth Industrial Revolution (Industry 4.0): A Social Innovation Perspective. Technology Innovation Management Review, 7 (11):14-18,
  18. Nagorny K., Limo-Monteiro P., Barata J., Colombo A., 2017. Big Data Analysis in Smart Manufacturing: A Review. International Journal of Communication, Network and System Sciences, 10: 31-58.,
  19. Pillioni V., 2018. How Data Will Transform Industrial Processes: Crowdsensing, Crowdsourcing and Big Data as Pillars of Industry 4.0. Future Internet, 10 (3),
  20. Roblek V., Mesko M., Krapez A., 2016. A Complex View of Industry 4.0. Sage Open April-June 2016, 1 (11),
  21. Rojko A., 2017. Industry 4.0 Concept: Background and overview. International Journal of Interactive Mobile Technologies, 11(5),
  22. Turgay T., Emeagwali O., 2012. Hypercom- petition: the driving force behind successful business innovations? A critical review of literature, Investment Management and Financial Innovations. 9(3):111-113, Corpus ID: 55387401
  23. Romer P., 1990. Endogenous Technological Change. The Journal of Political Economy. 98(5): 71-102
  24. Savastano M., Amendola C., Bellini F., D'Ascenzo F., 2019. Contextual Impacts on Industrial Processes Brought by the Digital Transformation of Manufacturing: A Systematic Review. Sustainability. 11 (3):1-3,
  25. Schiliro D. ,2017. A glance at Solow's growth theory. MPRA Paper No. 84531
  26. Serpa S., Ferreira C., 2019. Micro, Meso and Macro Levels of Social Analysis. International Journal of Social Science Studies, 7 (3): 121-131, ISSN 2324-8033
  27. Skillton M., Hovsepian F., 2018. The 4th Industrial Revolution, Springer: 282-284
  28. Thoben K., Wiesner S., Wuest T., 2016. Industrie 4.0 and Smart Manufacturing -A Review of Research Issues and Application Examples. International Journal of Automation Technology, 11(1):4-19,
  29. Vaidya S., Ambad P., Bhosle S., 2018. Industry 4.0 - A Glimpse. Procedia Manufacturing Volume 20:233-238, 4
  30. Xu L., Ling L., 2018. Industry 4.0: state of the art and future trends. International journal of production research, 8 (56): 2941-2962, 806
Cytowane przez
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu