BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Bąska Mateusz (Wrocław University of Economics and Business,, Poland)
Tytuł
The Clustering and Segmentation of Customers and Products in the Multi-Channel Sales of B2B E-Commerce Trading Companies
Klastrowanie i segmentacja klientów i produktów w sprzedaży wielokanałowej firm handlowych działających w e-commerce w segmencie B2B
Źródło
Informatyka Ekonomiczna / Uniwersytet Ekonomiczny we Wrocławiu, 2021, nr 2 (60), s. 14-26, rys., tab., bibliogr. 17 poz.
Business Informatics / Uniwersytet Ekonomiczny we Wrocławiu
Słowa kluczowe
Segmentacja, Handel elektroniczny, Strategia wszechkanałowa, Przegląd literatury
Segmentation, e-commerce, Omnichannel strategy, Literature review
Uwagi
Klasyfikacja JEL: D80, C38, M30
streszcz., summ.
Abstrakt
Ze względu na postępujący wzrost sprzedaży e-commerce oraz rosnące zainteresowanie sprzedażą wielkokanałową firm handlowych w segmencie business-to-business (B2B) wśród naukowców i praktyków celem niniejszego opracowania jest przedstawienie aktualnego przeglądu literatury na temat możliwości zawansowanej analityki (Big data). W szczególności zbadane zostały zagadnienia związane z klastrowaniem i segmentacją klientów i produktów, wskazano, jak temat ten był rozwijany w czasie, oraz zidentyfikowano najbardziej obiecujące obszary badawcze na najbliższą przyszłość. Artykuł oferuje wgląd w główne techniki klastrowania i segmentacji klientów i produktów, jak również wskazuje potencjalne obszary dalszych badań. Z perspektywy menedżerskiej artykuł jest przydatny dla firm wchodzących w sprzedaż wielkokanałową, aby ukierunkować ich przyszłe działania dotyczące metod zwiększania wartości zakupów klientów. (abstrakt oryginalny)

Given the progressive growth of e-commerce sales and the increasing interest in large-channel sales of business-to-business (B2B) trading companies among researchers and practitioners, the aim of this article was to identify the needs related to clustering and segmentation in B2B trading companies, as well as the techniques currently in use. Issues related to clustering and customer and product segmentation were explored and the most promising research areas for the nearest future identified. The article outlines the main techniques for clustering and segmenting customers and products, and identifies potential areas for further research. From a managerial perspective, the article is useful for companies entering the domain of multi-channel sales to guide their future efforts on methods to increase the value of customer purchases.(original abstract)
Dostępne w
Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie
Biblioteka Szkoły Głównej Handlowej w Warszawie
Biblioteka Główna Uniwersytetu Ekonomicznego w Katowicach
Biblioteka Główna Uniwersytetu Ekonomicznego we Wrocławiu
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Bąska, M., Dudycz, H., & Pondel, M. (2019). Identification of advanced data analysis in marketing: A systematic literature review. Journal of Economics & Management, 35, 18-39.
  2. Bohanec, M., Robnik-Šikonja, M., & Borštnar, M. K. (2017). Decision-making framework with double- loop learning through interpretable black-box machine learning models. Industrial Management & Data Systems, (7).
  3. Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. Buchanan, & A. Bryman (Eds), The Sage handbook of organizational research methods (pp. 671-689). London: Sage Publications Ltd.
  4. Exenberger, E., & Bucko, J. (2020). Analysis of Online Consumer Behavior-Design of the CRISP-DM Process Model. Agris On-Line Papers in Economics & Informatics, (3).
  5. Hofmann, E., & Bosshard, J. (2017). Supply chain management and activity-based costing: Current status and directions for the future. International Journal of Physical Distribution and Logistics Management, 47(8), 712-735.
  6. Hohenstein, N. O., Feisel, E., Hartmann, E., & Giunipero, L. (2015). Research on the phenomenon of supply chain resilience: a systematic review and paths for further investigation. International Journal of Physical Distribution & Logistics Management, 45(1-2), 90-117.
  7. Hosseini, S. M. S., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using the data mining approach to develop CRM methodology to assess customer loyalty. Expert Systems with Applications, 37(7), 5259-5264.
  8. Hosseini, M., & Shabani, M. (2015). A new approach to customer segmentation based on changes in customer value. Journal of Marketing Analytics, 3(3), 110-121.
  9. Kitchenham, B. (2004). Procedures for performing systematic reviews (Joint Technical Report TR/SE- 0401 and NICTA 0400011T.1 2004-07), Keele University.
  10. Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. London: Sage Publications Ltd.
  11. Müller, J. M., Pommeranz, B., Weisser, J., & Voigt, K. I. (2018). Digital, social media, and mobile marketing in industrial buying: Still in need of customer segmentation? Empirical evidence from Poland and Germany. Industrial Marketing Management, 73, 70-83.
  12. Sánchez-Hernández, G., Chiclana, F., Agell, N., & Aguado, J. C. (2013). Ranking and selection of unsupervised learning marketing segmentation. Knowledge-Based Systems, 44, 20-33.
  13. Simkin, L. (2008). Achieving market segmentation from B2B sectorisation. Journal of Business & Industrial Marketing, 23(7).
  14. Thomas, R. J. (2016). Multistage market segmentation: an exploration of B2B segment alignment. Journal of Business & Industrial Marketing, 31(7).
  15. Unity Group. (2021). Raport: Polski rynek B2B vs. Cyfrowy Megatrend. Sytuacja branży post COVID- 19. Retrieved April 4, 2021 from https://www.unitygroup.com/wp-content/uploads/2021/03/ Polski-rynek-B2B-vs.-Cyfrowy-Megatrend-Sytuacja-branzy-post-COVID-19.pdf
  16. Webster, M., & Cullen, A. J. (2007). A model of B2B e-commerce, based on connectivity and purpose. International Journal of Operations & Production Management, 27(2).
  17. Yin, R. K. (2003). Designing Case Studies. Qualitative Research Methods, 359-386. Retrieved from https://books.google.pl/books?id=KdneDQAAQBAJ&lpg=PA359&ots=gOPkErCfgW&dq =4. Yin R. K. (2003). Designing Case Studies. Qualitative% 20Research Methods 359-386.&lr&hl=pl&pg=PR4#v=onepage&q&f=false
Cytowane przez
Pokaż
ISSN
1507-3858
Język
eng
URI / DOI
http://dx.doi.org/10.15611/ie.2021.2.02
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu