BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Salleh Syahiirah (Universiti Teknologi Malaysia, Johor, Malaysia), Ujang Uznir (Universiti Teknologi Malaysia, Johor, Malaysia), Azri Suhaibah (Universiti Teknologi Malaysia, Johor, Malaysia)
Tytuł
Representing 3D Topological Adjacencies between Volumes Using a 36-Intersection Model
Źródło
Geomatics and Environmental Engineering, 2022, nr 16/2, s. 127-155, rys., tab., bibliogr. 23 poz.
Słowa kluczowe
Analiza zależności, Modele lokalizacji, Modelowanie struktury
Dependency analysis, Location models, Structure modeling
Uwagi
summ.
Kraj/Region
Malezja
Malaysia
Abstrakt
Topological properties of objects should be maintained and preserved to concisely represent objects. However, the implementation of 2Dtopological rules requires the decomposition of 3Dobjects into lower dimensions to determine topological relationships. This results in 2D topological relationships although the connected objects are in3D. Hence, accurate representation of 3Dconnectivity in 3Dmodels is limited. 3Dtopological rules can be implemented to include topological connectivity in 3Dspace. This paper implemented an extension ofthe 27-Intersection Model(27-IM) called the 36-Intersection Model(36-IM) to represent 3Dtopological adjacencies of two objects in 3Dspace. This resulted in a 12 × 3 intersection matrix or 36-IM that represented the intersections in terms of dimension and number of separations. Six cases were tested, consisting of "meets", "disjoint" "intersects at a line", "intersects at a point", "contains", and "overlaps". The resulting 36 IMmatrices provided an accurate representation of how the objects in 3Dspace were related and their dimension of intersections. The formalisms of the 36-IMmatrices were also interoperable which allowed the interpretation of 36-IM using the 9IM and DE-9IM to determine general topological relationships. By examining the intersection of interiors, boundaries and exteriors of 3Dobjects without object decomposition, 3Dtopological relationships can be determined as well as the dimension and manner of intersection.(original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Abdul-Rahman A., Pilouk M.: Spatial Data Modelling for 3D GIS. Springer Science & Business Media, 2007.
  2. Barzegar M., Rajabifard A., Kalantari M., Atazadeh B.: 3D BIM-enabled spatial query for retrieving property boundaries: a case study in Victoria, Australia. International Journal of Geographical Information Science, vol. 43(2), 2019, pp. 251-271. https://doi.org/10.1080/13658816.2019.1658877.
  3. Boguslawski P., Gold C.M., Ledoux H.: Modelling and analysing 3D buildings with a primal/dual data structure. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66(2), 2011, pp. 188-197. https://doi.org/10.1016/j.isprsjprs.2010.11.003.
  4. Boguslawski P., Gold C.: The Dual Half-Edge - A Topological Primal/Dual Data Structure and Construction Operators for Modelling and Manipulating Cell Complexes. ISPRS International Journal of Geo-Information, vol. 5(2), 2016, 19. https://doi.org/10.3390/ijgi5020019.
  5. Ellul C., Haklay M.: Requirements for Topology in 3D GIS. Transactions in GIS, vol. 10(2), 2006, pp. 157-175. https://doi.org/10.1111/j.1467-9671.2006.00251.x.
  6. ESRI: Topology Basics - ArcMap | Documentation. ArcGIS Desktop, https://desktop.arcgis.com/en/arcmap/latest/manage-data/topologies/topology-basics.htm [access: 7.08.2021].
  7. Ivanov R.: An algorithm for on-the-fly K shortest paths finding in multi-storey buildings using a hierarchical topology model. International Journal of Geographical Information Science, vol. 32(12), 2018, pp. 2362-2385. https://doi.org/10.1080/13658816.2018.1510126.
  8. Jarząbek-Rychard M., Borkowski A.: 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 118, 2016, pp. 1-12. https://doi.org/10.1016/j.isprsjprs.2016.04.005.
  9. Knoth L., Atazadeh B., Rajabifard A.: Developing a new framework based on solid models for 3D cadastres. Land Use Policy, vol. 92, 2020, 104480. https://doi.org/10.1016/j.landusepol.2020.104480.
  10. Ledoux H., Verbree E., Si H.: Geometric validation of GML solids with the constrained delaunay tetrahedralization. [in:] de Maeyer P., Neutens T., de Rijck M. (eds.), 3D GeoInfo 2009: Proceedings of the 4th International Workshop on 3D Geo-Information, Universiteit Gent, Ghent 2009, pp. 143-148.
  11. Lee J., Kwan M.-P.: A Combinatorial Data Model for Representing Topological Relations Among 3D Geographical Features in Micro-Spatial Environments. International Journal of Geographical Information Science, vol. 19(10), 2005, pp. 1039-1056. https://doi.org/10.1080/13658810500399043.
  12. Li L., Luo F., Zhu H., Ying S., Zhao Z.: A two-level topological model for 3D features in CityGML. Computers, Environment and Urban Systems, vol. 59, 2016, pp. 11-24. https://doi.org/10.1016/j.compenvurbsys.2016.04.007.
  13. Martinez-Llario J., Coll E., Núñez-Andrés M., Femenia-Ribera C.: Rule-based topology system for spatial databases to validate complex geographic datasets. Computers & Geosciences, vol. 103, 2017, pp. 122-132. https://doi.org/10.1016/j.cageo.2017.03.013.
  14. McDonnell R., Kemp K.: International GIS Dictionary. John Wiley & Sons, 1995.
  15. Ohori K.A., Ledoux H., Stoter J.: An evaluation and classification of nD topological data structures for the representation of objects in a higher-dimensional GIS. International Journal of Geographical Information Science, vol. 29(5), 2015, pp. 825-849. https://doi.org/10.1080/13658816.2014.999683.
  16. Salleh S., Ujang U., Azri S., Choon T.L.: Spatial Adjacency Analysis of CityGML Buildings via 3D Topological Data Structure. ISPRS The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-4/W16, 2019, pp. 573-579. https://doi.org/10.5194/isprs-archives-XLII-4-W16-573-2019.
  17. Salleh S., Ujang U., Azri S., Choon T.L.: 3D Topological Validation of Compact Abstract Cell Complexes (CACC) Data Structure for Buildings in CityGML. International Journal of Built Environment and Sustainability, vol. 7(2), 2020, pp. 25-32. https://doi.org/10.11113/ijbes.v7.n2.457.
  18. Shen J., Zhou T., Chen M.: A 27-intersection model for representing detailed topological relations between spatial objects in two-dimensional space. ISPRS International Journal of Geo-Information, vol. 6(2), 2017, 37. https://doi.org/10.3390/ijgi6020037.
  19. Solihin W., Eastman C., Lee Y.-C.: Multiple representation approach to achieve high-performance spatial queries of 3D BIM data using a relational database. Automation in Construction, vol. 81, 2017, pp. 369-388. https://doi.org/10.1016/j.autcon.2017.03.014.
  20. Strobl C.: Dimensionally Extended Nine-Intersection Model (DE-9IM). [in:] Shekhar S., Xiong H. (eds.), Encyclopedia of GIS, Springer, Boston, MA 2008, pp. 240-245. https://doi.org/10.1007/978-0-387-35973-1_298.
  21. Tran H., Khoshelham K., Kealy A.: Geometric comparison and quality evaluation of 3D models of indoor environments. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 149, 2019, pp. 29-39. https://doi.org/10.1016/j.isprsjprs.2019.01.012.
  22. Ujang U., Anton Castro F., Azri S.: Abstract Topological Data Structure for 3D Spatial Objects. ISPRS International Journal of Geo-Information, vol. 8(3), 2019, 102. https://doi.org/10.3390/ijgi8030102.
  23. Zhou M., Guan Q.: A 25-Intersection Model for Representing Topological Relations between Simple Spatial Objects in 3-D Space. ISPRS International Journal of Geo-Information, vol. 8(4), 2019, 182. https://doi.org/10.3390/ijgi8040182.
Cytowane przez
Pokaż
ISSN
2300-7095
Język
eng
URI / DOI
http://dx.doi.org/10.7494/geom.2022.16.2.127
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu