- Autor
- Gosztonyi Márton (Budapest Business School University of Applied Sciences, Budapest, Hungary)
- Tytuł
- Comparative Research of Central and Eastern European Startup Researches Based on Artificial Intelligence-Based Natural Language Processing
- Źródło
- Journal of Intercultural Management, 2021, vol. 13, nr 4, s. 4-33, rys., tab., bibliogr. 53 poz.
- Słowa kluczowe
- Przedsiębiorstwo typu start-up, Eksploracja tekstu, Sztuczna inteligencja
Startup, Text mining, Artificial intelligence - Uwagi
- Klasyfikacja JEL: M13, C45, M20, I23
summ. - Kraj/Region
- Europa Środkowo-Wschodnia
Central and Eastern Europe - Abstrakt
- Objective: In our study, we analyze Central and Eastern European (CEE) scientific papers published in peer-reviewed scientific journals between 2015 and 2021. We examine what category systems and methods are used in Central and Eastern European start-up researches in the recent years.
Methodology: Our used methodology was structured literature review analysis and artificial intelligence-based natural language processing which is one of the most evolving methodological directions in economics and social sciences at present but it is very rarely used in review analysis of startup research.
Value Added: The NLP method has not been widely used for the analysis of the startup literature. Furthermore, our study is the first which analyzes CEE startups research with NLP technique.
Findings: Based on our results, it can be stated that CEE startup researches follow the big global startup research narratives. However, a specific conceptual network is also emerging which contains several shifts of emphasis compared to the directions of global research. (original abstract) - Pełny tekst
- Pokaż
- Bibliografia
- Aizawa, A. (2003). An Information-theoretic Perspective of tf-idf Measures. Information Processing & Management, 39(1), 45-65.
- Angel, D. P. (1989). The Labor Market for Engineers in the US Semiconductor Industry. Economic Geography, 65, 99-112.
- Antretter, T., Blohm, I., Grichnik, D., & Wincent, J. (2019). Predicting new venture survival: a Twitter - based machine learning approach to measuring online legitimacy. Journal of Business Venturing Insights, 3(12), 22-33.
- Aschmann, H. (1970). The Natural History of a Mine. Economic Geography, 46, 172-189.
- Barringer, B. R., Jones, F. F., & Neubaum, D. O. (2005). A Quantitative Content Analysis of the Characteristics of Rapid-Growth Firms and Their Founders. Journal of Business Venturing, 20(5), 663-687.
- Baumeister, R. F., & Leary, M. R. (1997). Writing Narrative Literature Reviews. Review of General Psychology, 1, 311-320. DOI: 10.1037/1089-2680.1.3.311.
- Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., & Matsuo, A. (2018). Quanteda: An R Rackage for the Quantitative Analysis of Textual Data. Journal of Open Source Software, 30(3), 774. DOI: 10.21105/joss.00774.
- Bussgang, J. (2010). Mastering the VC Game. London: Penguin.
- Cockayne, D. (2019). What Is a Startup Firm? A Methodological and Epistemological Investigation into research objects in economic geography. Geoforum, 107, 77-87.
- Dellermann, D., Lipusch, N., Ebel, P., Popp, K. M., & Leimeister, J. M. (2017). Finding the Unicorn: Predicting Early Stage Startup Success through a Hybrid Intelligence Method. SSRN Electronic Journal, 12(2), 22-44, DOI: 10.2139/ssrn.3159123.
- Demil, B., Lecocq, X., Ricart, J. E., & Zott, C. (2015). Introduction to the SEJ Special Issue on Business Models: Business Models within the Domain of Strategic Entrepreneurship. Strategic Entrepreneurship Journal, 9(1), 1-11.
- Feld, B., & Mendelson, J. (2016). Venture Deals. Hoboken: Wiley.
- Fesser, H. R., & Willard, G. E. (1990). Founding Strategy and Performance: A Comparison of High and Low Growth High Tech Forms. Strategic Management Journal, 11(2), 87-98.
- Florida, R. (2005). Cities and the Creative Class. London: Routledge.
- Gill, R. (2002). Cool, Creative, and Egalitarian? Exploring Gender in Project-Based New Media Work in Europe. Information, Communication & Society, 5, 70-89.
- Glupker, J., Nair, V., Richman, B., Riener, K., & Sharma, A. (2019). Predicting Investor Success Using Graph Theory and Machine Learning. Journal of Investment Management, 17(1), 92-103.
- Gosztonyi, M. (2021). A Big data és a részvételiség hatása a tudományos megismerésre és oktatásra. In P. Furkó, É. Szathmári (Eds.), Tudomány, küldetés, társadalmi szerepvállalás: STUDIA CAROLIENSIA - A Károli Gáspár Református Egyetem 2020-as évkönyve. Budapest: L'Harmattan Kiadó.
- Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, 21(3), 267-297.
- Harris, Z. S. (1954). Distributional structure. Papers in Structural and Transformational Linguistics. Dordrecht: Reidel.
- Hatzivassiloglou, V., & McKeown, K. R. (1997). Predicting the semantic orientation of adjectives. In Proceedings of the 8th conference on European chapter of the association for computational linguistics (pp. 174-181). Madrid, Spain.
- Hermes, S., Böhm, M., & Krcmar, H. (2019). Business Model Innovation and Stakeholder Exploring Mechanisms and Outcomes of Value Creation and Destruction. In T. Ludwig, V. Pipek (Eds.), Proceedings of the 14. Internationale Tagung Wirtschaftsinformatik (WI 2019). Siegen, Germany.
- Hjorth, F., Klemmensen, R., Hobolt, S., Hansen, M. E., & Kurrild-Klitgaard, P. (2015) Computers, Coders, and Voters: Comparing Automated Methods for Estimating Party Positions. Research & Politics, 2(2). DOI: 2053168015580476.
- Hwang, V., & Horowitt, G. (2012). The Rainforest: The Secret to Building the Next Silicon Valley. Los Altos Hills: Regenwald.
- Kim, S.-M., & Hovy, E. (2004, August 23-27). Determining the sentiment of opinions. In Proceedings of the 20th international conference on computational linguistics (COLING 2004) (pp. 1367-1373). Geneva, Switzerland.
- Kuzminov, I., Bakhtin, P., Khabirova, E., Kotsemir, M., & Lavrynenko, A. (2018). Mapping the Radical Innovations in Food Industry: A Text Mining Study. Higher School of Economics Research Paper No. WP BRP 80/STI/2018. DOI: 10.2139/ssrn.3143721.
- Laver, M., Benoit, K., & Garry, J. (2003). Extracting Policy Positions from Political Texts Using Words as Data. American Political Science Review 97(2), 311-331.
- Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., & Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Annals of Internal Medicine, 151, W-65. DOI: 10.7326/0003-4819-151-4-200908180-00136.
- Liu, B. (2010). Sentiment Analysis and Subjectivity. Handbook of Natural Language Processing, 2(2010), 627-666.
- Markusen, A. (2003). Fuzzy Concepts, Scanty Evidence, Policy Distance: The Cas for Rigour and Policy Relevance in Critical Regional Studies. Regional Studies, 37, 701-717.
- Marwick, A. (2013). Status Update: Celebrity, Publicity, and Branding in the Social Media Age. New Haven: Yale University Press.
- McRobbie, A. (2002). Clubs to Companies: Notes on the Decline of Political Culture in Speeded up Creative Worlds. Cultural Studies, 16, 516-531.
- Praag, M., & Versloot, P. H. (2007). What is the Value of Entrepreneurship? A Review of Recent Research. Small Business Economics, 29, 351-382. DOI: 10.1007/s11187-007-9074-x.
- Prabowo, R., & Thelwall, M. (2009). Sentiment Analysis: A Combined Approach. Journal of Informetrics, 3(2), 143-157.
- Ray, M. D., Villeneuve, P. Y., & Roberge, R. A. (1974). Functional Prerequisites, Spatial Diffusion, and Allometric Growth. Economic Geography, 50, 341-351.
- Saif, M., & Turney, P. D. (2013). Nrc emotion lexicon. National Research Council, Canada, 2.
- Santana, J., Hoover, R., & Vengadasubbu, M. (2017). Investor Commitment to Serial Entrepreneurs: A Multilayer Network Analysis. Social Networks, 48, 256-269.
- Saxenian, A. (1994). Regional Advantage: Culture and Competition in Silicon Valley and Route 128. Cambridge: Harvard University Press.
- Schmidt, W. H., Lippitt, G. L. (1967). Crises in a Developing Organization. Harvard Business Review, 45(6), 102-112.
- Schoenberger, E. (1986). The Cultural Crisis of the Firm. London: Blackwell.
- Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing Surveys, 34(1), 1-47.
- Sebők, M., Ring, O., & Máté Á. (2021). Szövegbányászat és mesterséges intelligencia R-ben. Budapest: Typotex Kiadó.
- Slapin, J. B., & Proksch, S. (2008). A Scaling Model for Estimating Time-Series Party Positions from Texts. American Journal of Political Science, 52(3), 705-722.
- Proksch, S.-O., & Slapin, J. B. (2010). Position Taking in European Parliament Speeches. British Journal of Political Science, 52 (2010), 587-611.
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14, 207-222. DOI: 10.1111/1467-8551.00375.
- Watanabe, K. (2021). Latent Semantic Scaling: A Semisupervised Text Analysis Technique for New Domains and Languages. Communication Methods and Measures, 15(2), 81-102.
- Webster, J., & Watson, R. T. (2002). Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Quarterly, 26(2), xiii-xxiii.
- Wennekers, S., & Thurik, R. (1999). Linking Entrepreneurship and Economic Growth. Small Business Economics, 13(1), 27-56. DOI: 10.1023/A:1008063200484.
- Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing Contextual Polarity in Phraselevel Sentiment Analysis. In Proceeding of the conference on empirical methods in natural language processing (EMNLP 2005) (pp. 347-354). Vancouver, BC, Canada.
- Xu, R., Chen, H., & Zhao, J. L. (2017). Predicting Corporate Venture Capital Investment. In 38th International Conference on Information Systems (ICIS 2017): Transforming Society with Digital Innovation. Republic of Korea: Association for Information Systems.
- Yeung, H. W-C. (2019). Rethinking Mechanism and Process in the Geographical Analysis of Uneven Development. Dialogues in Human Geography, 9(3), 226-255.
- Young, L., & Soroka, S. (2012). Affective News: The Automated Coding of Sentiment in Political Texts. Political Communication, 29(2), 205-231.
- Zacharakis, A., Reynolds, P. D., & Bygrave, W. D. (1999). National Entrepreneurship Assessment: United States of America. 1999 Executive Report. Kansas City, Mo.: Kauffman Center for Entrepreneurial Leadership.
- Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley.
- Cytowane przez
- ISSN
- 2080-0150
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.2478/joim-2021-0070