BazEkon - Biblioteka Główna Uniwersytetu Ekonomicznego w Krakowie

BazEkon home page

Meny główne

Autor
Feder-Sempach Ewa (University of Lodz), Szczepocki Piotr (University of Lodz, Poland)
Tytuł
The Bayesian Method in Estimating Polish and German Industry Betas : a Comparative Analysis of the Risk between the Main Economic Sectors from 2001-2020
Oszacowaniach polskich i niemieckich współczynników beta z użyciem metody bayesowskiej - porównanie dla głównych indeksów sektorowych w latach 2001-2020
Źródło
Comparative Economic Research, 2022, vol. 25, nr 2, s. 45-60, rys., tab., bibliogr. 36 poz.
Słowa kluczowe
Współczynnik Beta, Model wyceny aktywów kapitałowych, Estymacja bayesowska, Symulacja Monte Carlo, Analiza porównawcza
Beta factor, Capital Asset Pricing Model (CAPM), Bayesian estimation, Monte Carlo simulation, Comparative analysis
Uwagi
Klasyfikacja JEL: C11, G10, G11, G15
summ., streszcz.
Kraj/Region
Polska, Niemcy
Poland, Germany
Abstrakt
Celem artykułu jest porównanie długookresowych zależności w poziomie branżowego ryzyka systematycznego, mierzonego współczynnikiem beta, na polskim i niemieckim rynku giełdowym. Poziom ryzyka został oszacowany dla pięciu sektorów polskich i trzech niemieckich na podstawie modelu CAPM z wykorzystaniem metody bayesowskiej w okresie 2001-2020. Cele szczegółowe artykułu to rozwinięcie i udoskonalenie nowego podejścia bayesowkiego (model SBETA) do szacowania poziomu ryzyka i porównanie wielkości współczynnika beta zmiennego w czasie na obu rynkach wraz z prostą rekomendacją inwestycyjną, tj. sektor agresywny lub defensywny. Wyniki wskazują, że współczynniki beta niemieckich sektorów miały niższy poziom persystencji, co jest charakterystyczne dla rynków rozwiniętych. Sektor bankowy okazał się najbardziej agresywny, najwyższy poziom bety, zarówno na polskim i niemieckim rynku giełdowym. Polskie indeksy sektorowe budownictwo, IT, artykuły spożywcze i telekomunikacja zostały zakwalifikowane do defensywnych. Niemieckie indeksy, Technologiczny (IT) został zakwalifikowany do agresywnych ale telekomunikacja do defensywnych. Na podstawie obliczeń wskazano, że polski sektor bankowy i niemiecki technologiczny przyniosły wyższe dochody niż cały rynek w analizowanym okresie. Wyniki mają bardzo duże znaczenie dla oceny poziomu ryzyka systematycznego na polskiej i niemieckiej giełdzie papierów wartościowych i dają jasne rekomendacje inwestorom międzynarodowym. (abstrakt oryginalny)

This paper examines the long-term dependence between the Polish and German stock markets in terms of industry beta risk estimates according to the Capital Asset Pricing Model (CAPM). The main objective of this research is to compare the Polish and German beta parameters of five Polish and three German sector indices using the Bayesian methodology in the period 2001-2020. The study has two detailed aims. First, to develop a modified, Bayesian approach (SBETA model) that generates significantly more precise beta than the traditional model. Second, to compare the results of different time-varying industry betas in the Polish and German economies, giving a simple investment recommendation, i.e., which sector could be classified as aggressive or defensive. The betas were time-varying in both markets but less persistent in the German industries, which seems characteristic of an advanced economy. The Banking sector betas were the highest in both markets, implying the aggressive nature of that industry in the last twenty years. For the Polish market industry, the betas of Construction, IT, Food and Drinks, and Telecom were classified as defensive. For the German economy, the Technologies (IT) sector was also classified as aggressive, but Telecom was defensive. The results give a valuable insight into the systematic risk levels in Poland and Germany, reflecting the investors' learning process and indicating that Polish Banking and German technologies outperformed the market in the last twenty years. (original abstract)
Pełny tekst
Pokaż
Bibliografia
Pokaż
  1. Berk, J.B., Green, R.C., Naik, V. (1999), Optimal investment, growth options, and security returns, "The Journal of Finance", 54 (5), pp. 1553-1607, https://doi.org/10.1111/0022-1082.00161
  2. Będowska-Sójka, B. (2017), Evaluating the Accuracy of Time-varying Beta. The Evidence from Poland, "Dynamic Econometric Models", 17, pp. 161-176.
  3. Blume, M.E. (1975), Betas and their regression tendencies, "The Journal of Finance", 30 (3), pp. 785-795, https://doi.org/10.1111/j.1540-6261.1975.tb01850.x
  4. Cepeda-Cuervo, E., Jaimes, D., Marín, M., Rojas, J. (2016), Bayesian beta regression with Bayesianbetareg R-package, Comput Stat 31, pp. 165-187, https://doi.org/10.1007/s00180-015-0591-9
  5. Chaveau, T., and Maillet, B. (1998), Flexible Least Squares Betas: The French Market Case, Papers 1998-03/fi, Caisse des Depots et Consignations - Cahiers de recherche.
  6. Das, A., Ghoshal, T. (2010), Market Risk Beta Estimation using Adaptive Kalman Filter, "International Journal of Engineering Science and Technology", 2 (6), pp. 1923-1934.
  7. Dębski, W., Feder-Sempach, E., Świderski, B. (2015), Are beta parameters stable on the Warsaw Stock Exchange, "Kwartalnik Kolegium Ekonomiczno-społecznego", Studia i Prace No. 3 tom. 3 (23), pp. 65-74, https://doi.org/10.33119/KKESSiP.2015.3.3.5
  8. Dębski, W., Feder-Sempach, E., Świderski, B. (2016), Beta stability over bull and bear market on the Warsaw Stock Exchange, "Folia Oeconomica Statinesia", 16 (1), pp. 75-92. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, Szczecin. 2016/1. https://doi.org/10.1515/foli-2016-0006
  9. Dębski, W., Feder-Sempach, E., Wójcik, S. (2018), Statistical Properties of Rates of Return on Shares Listed on the German, French, and Polish Markets - a Comparative Study, "Contemporary Economics", 12 (1), pp. 5-16.
  10. Dębski W., Feder-Sempach E., Szczepocki, P. (2020), Time-Varying Beta-The Case Study of the Largest Companies from the Polish, Czech, and Hungarian Stock Exchange, "Emerging Markets Finance and Trade", 2020, https://doi.org/10.1080/154 0496X.2020.1738188
  11. Ebner, M., Neumann, T. (2005), Time-Varying Betas of German Stock Returns, "Financial Markets and Portfolio Management", 19 (1), pp. 29-46, https://doi.org/10.1007/s11408-005-2296-5
  12. Elshqirat, M., Sharifzadeh, M. (2018), Testing a multi-factor capital asset pricing model in the Jordanian Stock Market, "International Business Research", 11 (9), pp. 13-22. https://doi.org/10.5539/ibr.v11n9p13
  13. Engle, R.F. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, "Journal of Business and Economic Statistics", 20, pp. 339-350, https://doi.org/10.1198/073500102288618487
  14. Engle, R.F., Kroner, K.F. (1995), Multivariate Simultaneous Generalized Arch, "Econometric Theory", 11 (1), https://doi.org/10.1017/S0266466600009063
  15. Fabozzi, F.J., Francis, J.C. (1978), Betas as a random coefficient, "Journal of Financial and Quantitative Analysis", 13, pp. 101-115, https://doi.org/10.2307/2330525
  16. Faff, R.W., Hillier, D., Hillier, J. (2000), Time varying beta risk: An analysis of alternative modelling techniques, "Journal of Business Finance & Accounting", 27 (5-6), pp. 523-554, https://doi.org/10.1111/1468-5957.00324
  17. Fama, E.F., French, K.R., (1993), Common risk factors in the returns on stocks and bonds, "Journal of Financial Economics", Elsevier, 33 (1), pp. 3-56, https://doi.org/10.1016/0304-405X(93)90023-5
  18. French, J. (2016), Estimating time-varying beta-coefficients: An empirical study of US &ASEAN portfolios, "Research in Finance", 32, pp. 19-34, https://doi.org/10.1108/S0196-382120160000032002
  19. Gomes, J., Kogan, L., Zhang, L. (2003), Equilibrium cross section of returns, "Journal of Political Economy", 111 (4), pp. 693-732, https://doi.org/10.1086/375379
  20. Jostova, G., Philipov, A. (2005), Bayesian analysis of stochastic betas, "Journal of Financial and Quantitative Analysis", 40 (4), pp. 747-778, https://doi.org/10.1017/S0022109000001964
  21. Kim, S., Shephard, N., Chib, S. (1998), Stochastic volatility: likelihood inference and comparison with ARCH models, "The Review of Economic Studies", 65 (3), pp. 361-393, https://doi.org/10.1111/1467-937X.00050
  22. Kurach, R., Stelmach, J. (2014), Time-Varying Behavior of Sector Beta Risk - The Case of Poland, "Romanian Journal of Economic Forecasting", XVII (1), pp. 139-159, https://doi.org/10.2478/cer-2014-0018
  23. Lewellen, J., Nagel, S. (2006), The Conditional CAPM Does Nol Explain Asset-Pricing Anomalies, "Journal of Financial Economics", 82 (2), November 2006, pp. 289-314, https://doi.org/10.1016/j.jfineco.2005.05.012
  24. Lintner, J. (1965), Security Prices, Risk, And Maximal Gains From Diversification, "Journal of Finance", American Finance Association, 20 (4), pp. 587-615, https://doi.org/10.1111/j.1540-6261.1965.tb02930.x
  25. Mergner, S., Bulla, J. (2008), Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques, "The European Journal of Finance", 14 (8) pp. 771-802, https://doi.org/10.1080/13518470802173396
  26. Mossin, J. (1966), Equilibrium in a Capital Asset Market, "Econometrica", 34 (4), pp. 768-783, https://doi.org/10.2307/1910098
  27. Petkova, R., Zhang, L. (2005), Is value riskier than growth?, "Journal of Financial Economics", 78 (1), pp. 187-202, https://doi.org/10.1016/j.jfineco.2004.12.001
  28. Sharpe, W. (1964), Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, "Journal of Finance", 19 (3), pp. 425-442, https://doi.org/10.1111/j.15 40-6261.1964.tb02865.x
  29. Stan Development Team (2020), RStan: the R interface to Stan. R package version 2.21.2, http://mc-stan.org/
  30. Le Tan Phuoc, Chinh Duc Pham (2020), The systematic risk estimation models: A different perspective, "Heliyon", 6 (2), https://doi.org/10.1016/j.heliyon.2020.e03371
  31. Tsuji, C. (2017), An exploration of the time-varying beta of the international capital asset pricing model: The case of the Japanese and the other Asia-Pacific Stock Markets, "Accounting and Finance Research", pp. 86-93, https://doi.org/10.5430/afr.v6n2p86
  32. Wells, C. (1994), Variable betas on the Stockholm exchange 1971-1989, "Applied Economics", 4, pp. 75-92, https://doi.org/10.1080/758522128
  33. Wdowiński, P. (2004), Determinants of country beta risk in Poland, CESifo Working Paper Series 1120. CESifo Group Munich, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=510962 (accessed: 16.04.2018).
  34. Yao, J., Gao, J. (2004), Computer-Intensive Time-Varying Model Approach to the Systematic Risk of Australian Industrial Stock Returns, "Australian Journal of Management", Australian School of Business, 29 (1), pp. 121-145, https://doi.org/10.1177/031289620402900113
  35. Yu, J. (2005), On leverage in a stochastic volatility model, "Journal of Econometrics", 127 (2), pp. 165-178, https://doi.org/10.1016/j.jeconom.2004.08.002
  36. Zhang, L. (2005), The value premium, "The Journal of Finance", 60 (1), pp. 67-103, https://doi.org/10.1111/j.1540-6261.2005.00725.x
Cytowane przez
Pokaż
ISSN
1508-2008
Język
eng
URI / DOI
http://dx.doi.org/10.18778/1508-2008.25.12
Udostępnij na Facebooku Udostępnij na Twitterze Udostępnij na Google+ Udostępnij na Pinterest Udostępnij na LinkedIn Wyślij znajomemu