- Autor
- Feder-Sempach Ewa (University of Lodz), Szczepocki Piotr (University of Lodz, Poland)
- Tytuł
- The Bayesian Method in Estimating Polish and German Industry Betas : a Comparative Analysis of the Risk between the Main Economic Sectors from 2001-2020
Oszacowaniach polskich i niemieckich współczynników beta z użyciem metody bayesowskiej - porównanie dla głównych indeksów sektorowych w latach 2001-2020 - Źródło
- Comparative Economic Research, 2022, vol. 25, nr 2, s. 45-60, rys., tab., bibliogr. 36 poz.
- Słowa kluczowe
- Współczynnik Beta, Model wyceny aktywów kapitałowych, Estymacja bayesowska, Symulacja Monte Carlo, Analiza porównawcza
Beta factor, Capital Asset Pricing Model (CAPM), Bayesian estimation, Monte Carlo simulation, Comparative analysis - Uwagi
- Klasyfikacja JEL: C11, G10, G11, G15
summ., streszcz. - Kraj/Region
- Polska, Niemcy
Poland, Germany - Abstrakt
- Celem artykułu jest porównanie długookresowych zależności w poziomie branżowego ryzyka systematycznego, mierzonego współczynnikiem beta, na polskim i niemieckim rynku giełdowym. Poziom ryzyka został oszacowany dla pięciu sektorów polskich i trzech niemieckich na podstawie modelu CAPM z wykorzystaniem metody bayesowskiej w okresie 2001-2020. Cele szczegółowe artykułu to rozwinięcie i udoskonalenie nowego podejścia bayesowkiego (model SBETA) do szacowania poziomu ryzyka i porównanie wielkości współczynnika beta zmiennego w czasie na obu rynkach wraz z prostą rekomendacją inwestycyjną, tj. sektor agresywny lub defensywny. Wyniki wskazują, że współczynniki beta niemieckich sektorów miały niższy poziom persystencji, co jest charakterystyczne dla rynków rozwiniętych. Sektor bankowy okazał się najbardziej agresywny, najwyższy poziom bety, zarówno na polskim i niemieckim rynku giełdowym. Polskie indeksy sektorowe budownictwo, IT, artykuły spożywcze i telekomunikacja zostały zakwalifikowane do defensywnych. Niemieckie indeksy, Technologiczny (IT) został zakwalifikowany do agresywnych ale telekomunikacja do defensywnych. Na podstawie obliczeń wskazano, że polski sektor bankowy i niemiecki technologiczny przyniosły wyższe dochody niż cały rynek w analizowanym okresie. Wyniki mają bardzo duże znaczenie dla oceny poziomu ryzyka systematycznego na polskiej i niemieckiej giełdzie papierów wartościowych i dają jasne rekomendacje inwestorom międzynarodowym. (abstrakt oryginalny)
This paper examines the long-term dependence between the Polish and German stock markets in terms of industry beta risk estimates according to the Capital Asset Pricing Model (CAPM). The main objective of this research is to compare the Polish and German beta parameters of five Polish and three German sector indices using the Bayesian methodology in the period 2001-2020. The study has two detailed aims. First, to develop a modified, Bayesian approach (SBETA model) that generates significantly more precise beta than the traditional model. Second, to compare the results of different time-varying industry betas in the Polish and German economies, giving a simple investment recommendation, i.e., which sector could be classified as aggressive or defensive. The betas were time-varying in both markets but less persistent in the German industries, which seems characteristic of an advanced economy. The Banking sector betas were the highest in both markets, implying the aggressive nature of that industry in the last twenty years. For the Polish market industry, the betas of Construction, IT, Food and Drinks, and Telecom were classified as defensive. For the German economy, the Technologies (IT) sector was also classified as aggressive, but Telecom was defensive. The results give a valuable insight into the systematic risk levels in Poland and Germany, reflecting the investors' learning process and indicating that Polish Banking and German technologies outperformed the market in the last twenty years. (original abstract) - Pełny tekst
- Pokaż
- Bibliografia
- Berk, J.B., Green, R.C., Naik, V. (1999), Optimal investment, growth options, and security returns, "The Journal of Finance", 54 (5), pp. 1553-1607, https://doi.org/10.1111/0022-1082.00161
- Będowska-Sójka, B. (2017), Evaluating the Accuracy of Time-varying Beta. The Evidence from Poland, "Dynamic Econometric Models", 17, pp. 161-176.
- Blume, M.E. (1975), Betas and their regression tendencies, "The Journal of Finance", 30 (3), pp. 785-795, https://doi.org/10.1111/j.1540-6261.1975.tb01850.x
- Cepeda-Cuervo, E., Jaimes, D., Marín, M., Rojas, J. (2016), Bayesian beta regression with Bayesianbetareg R-package, Comput Stat 31, pp. 165-187, https://doi.org/10.1007/s00180-015-0591-9
- Chaveau, T., and Maillet, B. (1998), Flexible Least Squares Betas: The French Market Case, Papers 1998-03/fi, Caisse des Depots et Consignations - Cahiers de recherche.
- Das, A., Ghoshal, T. (2010), Market Risk Beta Estimation using Adaptive Kalman Filter, "International Journal of Engineering Science and Technology", 2 (6), pp. 1923-1934.
- Dębski, W., Feder-Sempach, E., Świderski, B. (2015), Are beta parameters stable on the Warsaw Stock Exchange, "Kwartalnik Kolegium Ekonomiczno-społecznego", Studia i Prace No. 3 tom. 3 (23), pp. 65-74, https://doi.org/10.33119/KKESSiP.2015.3.3.5
- Dębski, W., Feder-Sempach, E., Świderski, B. (2016), Beta stability over bull and bear market on the Warsaw Stock Exchange, "Folia Oeconomica Statinesia", 16 (1), pp. 75-92. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, Szczecin. 2016/1. https://doi.org/10.1515/foli-2016-0006
- Dębski, W., Feder-Sempach, E., Wójcik, S. (2018), Statistical Properties of Rates of Return on Shares Listed on the German, French, and Polish Markets - a Comparative Study, "Contemporary Economics", 12 (1), pp. 5-16.
- Dębski W., Feder-Sempach E., Szczepocki, P. (2020), Time-Varying Beta-The Case Study of the Largest Companies from the Polish, Czech, and Hungarian Stock Exchange, "Emerging Markets Finance and Trade", 2020, https://doi.org/10.1080/154 0496X.2020.1738188
- Ebner, M., Neumann, T. (2005), Time-Varying Betas of German Stock Returns, "Financial Markets and Portfolio Management", 19 (1), pp. 29-46, https://doi.org/10.1007/s11408-005-2296-5
- Elshqirat, M., Sharifzadeh, M. (2018), Testing a multi-factor capital asset pricing model in the Jordanian Stock Market, "International Business Research", 11 (9), pp. 13-22. https://doi.org/10.5539/ibr.v11n9p13
- Engle, R.F. (2002), Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models, "Journal of Business and Economic Statistics", 20, pp. 339-350, https://doi.org/10.1198/073500102288618487
- Engle, R.F., Kroner, K.F. (1995), Multivariate Simultaneous Generalized Arch, "Econometric Theory", 11 (1), https://doi.org/10.1017/S0266466600009063
- Fabozzi, F.J., Francis, J.C. (1978), Betas as a random coefficient, "Journal of Financial and Quantitative Analysis", 13, pp. 101-115, https://doi.org/10.2307/2330525
- Faff, R.W., Hillier, D., Hillier, J. (2000), Time varying beta risk: An analysis of alternative modelling techniques, "Journal of Business Finance & Accounting", 27 (5-6), pp. 523-554, https://doi.org/10.1111/1468-5957.00324
- Fama, E.F., French, K.R., (1993), Common risk factors in the returns on stocks and bonds, "Journal of Financial Economics", Elsevier, 33 (1), pp. 3-56, https://doi.org/10.1016/0304-405X(93)90023-5
- French, J. (2016), Estimating time-varying beta-coefficients: An empirical study of US &ASEAN portfolios, "Research in Finance", 32, pp. 19-34, https://doi.org/10.1108/S0196-382120160000032002
- Gomes, J., Kogan, L., Zhang, L. (2003), Equilibrium cross section of returns, "Journal of Political Economy", 111 (4), pp. 693-732, https://doi.org/10.1086/375379
- Jostova, G., Philipov, A. (2005), Bayesian analysis of stochastic betas, "Journal of Financial and Quantitative Analysis", 40 (4), pp. 747-778, https://doi.org/10.1017/S0022109000001964
- Kim, S., Shephard, N., Chib, S. (1998), Stochastic volatility: likelihood inference and comparison with ARCH models, "The Review of Economic Studies", 65 (3), pp. 361-393, https://doi.org/10.1111/1467-937X.00050
- Kurach, R., Stelmach, J. (2014), Time-Varying Behavior of Sector Beta Risk - The Case of Poland, "Romanian Journal of Economic Forecasting", XVII (1), pp. 139-159, https://doi.org/10.2478/cer-2014-0018
- Lewellen, J., Nagel, S. (2006), The Conditional CAPM Does Nol Explain Asset-Pricing Anomalies, "Journal of Financial Economics", 82 (2), November 2006, pp. 289-314, https://doi.org/10.1016/j.jfineco.2005.05.012
- Lintner, J. (1965), Security Prices, Risk, And Maximal Gains From Diversification, "Journal of Finance", American Finance Association, 20 (4), pp. 587-615, https://doi.org/10.1111/j.1540-6261.1965.tb02930.x
- Mergner, S., Bulla, J. (2008), Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques, "The European Journal of Finance", 14 (8) pp. 771-802, https://doi.org/10.1080/13518470802173396
- Mossin, J. (1966), Equilibrium in a Capital Asset Market, "Econometrica", 34 (4), pp. 768-783, https://doi.org/10.2307/1910098
- Petkova, R., Zhang, L. (2005), Is value riskier than growth?, "Journal of Financial Economics", 78 (1), pp. 187-202, https://doi.org/10.1016/j.jfineco.2004.12.001
- Sharpe, W. (1964), Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, "Journal of Finance", 19 (3), pp. 425-442, https://doi.org/10.1111/j.15 40-6261.1964.tb02865.x
- Stan Development Team (2020), RStan: the R interface to Stan. R package version 2.21.2, http://mc-stan.org/
- Le Tan Phuoc, Chinh Duc Pham (2020), The systematic risk estimation models: A different perspective, "Heliyon", 6 (2), https://doi.org/10.1016/j.heliyon.2020.e03371
- Tsuji, C. (2017), An exploration of the time-varying beta of the international capital asset pricing model: The case of the Japanese and the other Asia-Pacific Stock Markets, "Accounting and Finance Research", pp. 86-93, https://doi.org/10.5430/afr.v6n2p86
- Wells, C. (1994), Variable betas on the Stockholm exchange 1971-1989, "Applied Economics", 4, pp. 75-92, https://doi.org/10.1080/758522128
- Wdowiński, P. (2004), Determinants of country beta risk in Poland, CESifo Working Paper Series 1120. CESifo Group Munich, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=510962 (accessed: 16.04.2018).
- Yao, J., Gao, J. (2004), Computer-Intensive Time-Varying Model Approach to the Systematic Risk of Australian Industrial Stock Returns, "Australian Journal of Management", Australian School of Business, 29 (1), pp. 121-145, https://doi.org/10.1177/031289620402900113
- Yu, J. (2005), On leverage in a stochastic volatility model, "Journal of Econometrics", 127 (2), pp. 165-178, https://doi.org/10.1016/j.jeconom.2004.08.002
- Zhang, L. (2005), The value premium, "The Journal of Finance", 60 (1), pp. 67-103, https://doi.org/10.1111/j.1540-6261.2005.00725.x
- Cytowane przez
- ISSN
- 1508-2008
- Język
- eng
- URI / DOI
- http://dx.doi.org/10.18778/1508-2008.25.12